Machine learning combined with solid solution strengthening model for predicting hardness of high entropy alloys

随机森林 计算机科学 特征选择 熵(时间箭头) 机器学习 人工智能 算法 热力学 物理
作者
Yifan Zhang,Wei Ren,Weili Wang,Shujian Ding,Nan Li,Liang Chang,Qian Zhou
出处
期刊:Chinese Physics [Science Press]
卷期号:72 (18): 180701-180701 被引量:4
标识
DOI:10.7498/aps.72.20230646
摘要

Traditional material calculation methods, such as first principles and thermodynamic simulations, have accelerated the discovery of new materials. However, these methods are difficult to construct models flexibly according to various target properties. And they will consume many computational resources and the accuracy of their predictions is not so high. In the last decade, data-driven machine learning techniques have gradually been applied to materials science, which has accumulated a large quantity of theoretical and experimental data. Machine learning is able to dig out the hidden information from these data and help to predict the properties of materials. The data in this work are obtained from the published references. And several performance-oriented algorithms are selected to build a prediction model for the hardness of high entropy alloys. A high entropy alloy hardness dataset containing 19 candidate features is trained, tested, and evaluated by using an ensemble learning algorithm: a genetic algorithm is selected to filter the 19 candidate features to obtain an optimized feature set of 8 features; a two-stage feature selection approach is then combined with a traditional solid solution strengthening theory to optimize the features, three most representative feature parameters are chosen and then used to build a random forest model for hardness prediction. The prediction accuracy achieves an <i>R</i><sup>2</sup> value of 0.9416 by using the 10-fold cross-validation method. To better understand the prediction mechanism, solid solution strengthening theory of the alloy is used to explain the hardness difference. Further, the atomic size, electronegativity and modulus mismatch features are found to have very important effects on the solid solution strengthening of high entropy alloys when genetic algorithms are used for implementing the feature selection. The machine learning algorithm and features are further used for predicting solid solution strengthening properties, resulting in an <i>R</i><sup>2</sup> of 0.8811 by using the 10-fold cross-validation method. These screened-out parameters have good transferability for various high entropy alloy systems. In view of the poor interpretability of the random forest algorithm, the SHAP interpretable machine learning method is used to dig out the internal reasoning logic of established machine learning model and clarify the mechanism of the influence of each feature on hardness. Especially, the valence electron concentration is found to have the most significant weakening effect on the hardness of high entropy alloys.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
KKKKKKK完成签到 ,获得积分10
1秒前
花园里的蒜完成签到 ,获得积分0
2秒前
2秒前
李李李完成签到,获得积分10
2秒前
陶醉的翠霜完成签到 ,获得积分10
3秒前
痴情的靖柔完成签到 ,获得积分10
4秒前
kk完成签到 ,获得积分10
4秒前
无为完成签到 ,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
温柔的曼梅完成签到 ,获得积分10
7秒前
悠然完成签到,获得积分10
8秒前
孙非完成签到,获得积分10
10秒前
听寒完成签到,获得积分10
10秒前
淡漠完成签到 ,获得积分10
11秒前
彪行天下完成签到,获得积分10
14秒前
桂花完成签到 ,获得积分10
14秒前
14秒前
hululu完成签到 ,获得积分10
20秒前
拼搏一曲完成签到 ,获得积分10
23秒前
WSYang完成签到,获得积分10
24秒前
瘦瘦的迎梦完成签到 ,获得积分10
25秒前
懒猫完成签到,获得积分10
26秒前
enternow完成签到 ,获得积分10
28秒前
sunsunsun完成签到,获得积分10
29秒前
路人完成签到,获得积分0
30秒前
31秒前
尹冰露完成签到,获得积分10
32秒前
量子星尘发布了新的文献求助10
33秒前
马香芦完成签到,获得积分10
37秒前
sptyzl完成签到 ,获得积分10
37秒前
典雅葶完成签到 ,获得积分10
40秒前
西洲完成签到 ,获得积分10
43秒前
xiaofenzi完成签到,获得积分10
43秒前
时尚丹寒完成签到 ,获得积分10
45秒前
46秒前
月亮与六便士完成签到 ,获得积分10
48秒前
jzmulyl完成签到,获得积分10
50秒前
xdc完成签到,获得积分10
50秒前
lynn完成签到 ,获得积分10
51秒前
漫漫楚威风完成签到 ,获得积分10
52秒前
高分求助中
Africanfuturism: African Imaginings of Other Times, Spaces, and Worlds 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2000
The Oxford Encyclopedia of the History of Modern Psychology 2000
Synthesis of 21-Thioalkanoic Acids of Corticosteroids 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Applied Survey Data Analysis (第三版, 2025) 850
Structural Equation Modeling of Multiple Rater Data 700
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3885956
求助须知:如何正确求助?哪些是违规求助? 3428011
关于积分的说明 10757326
捐赠科研通 3152807
什么是DOI,文献DOI怎么找? 1740660
邀请新用户注册赠送积分活动 840338
科研通“疑难数据库(出版商)”最低求助积分说明 785317