医学
改良兰金量表
磁共振成像
冲程(发动机)
队列
神经影像学
物理疗法
内科学
放射科
缺血性中风
缺血
机械工程
精神科
工程类
作者
Yongkai Liu,Yannan Yu,Jiahong Ouyang,Bin Jiang,Guang Yang,Sophie Ostmeier,Max Wintermark,Patrik Michel,David S. Liebeskind,Maarten G. Lansberg,Gregory W. Albers,Greg Zaharchuk
出处
期刊:Stroke
[Lippincott Williams & Wilkins]
日期:2023-07-24
卷期号:54 (9): 2316-2327
被引量:24
标识
DOI:10.1161/strokeaha.123.044072
摘要
Predicting long-term clinical outcome based on the early acute ischemic stroke information is valuable for prognostication, resource management, clinical trials, and patient expectations. Current methods require subjective decisions about which imaging features to assess and may require time-consuming postprocessing. This study's goal was to predict ordinal 90-day modified Rankin Scale (mRS) score in acute ischemic stroke patients by fusing a Deep Learning model of diffusion-weighted imaging images and clinical information from the acute period.
科研通智能强力驱动
Strongly Powered by AbleSci AI