Advancing flame retardant prediction: A self-enforcing machine learning approach for small datasets

阻燃剂 支持向量机 计算机科学 环氧树脂 更安全的 机器学习 材料科学 人工智能 复合材料 计算机安全
作者
Cheng Yan,Xiang Lin,Xiaming Feng,Hongyu Yang,Patrick Mensah,Guoqiang Li
出处
期刊:Applied Physics Letters [American Institute of Physics]
卷期号:122 (25) 被引量:9
标识
DOI:10.1063/5.0152195
摘要

Improving the fireproof performance of polymers is crucial for ensuring human safety and enabling future space colonization. However, the complexity of the mechanisms for flame retardant and the need for customized material design pose significant challenges. To address these issues, we propose a machine learning (ML) framework based on substructure fingerprinting and self-enforcing deep neural networks (SDNN) to predict the fireproof performance of flame-retardant epoxy resins. Our model is based on a comprehensive understanding of the physical mechanisms of materials and can predict fireproof performance and eliminate the needs for properties descriptors, making it more convenient than previous ML models. With a dataset of only 163 samples, our SDNN models show an average prediction error of 3% for the limited oxygen index (LOI). They also provide satisfactory predictions for the peak of heat release rate PHR and total heat release (THR), with coefficient of determination (R2) values of 0.87 and 0.85, respectively, and average prediction errors less than 17%. Our model outperforms the support vector model SVM for all three indices, making it a state-of-the-art study in the field of flame retardancy. We believe that our framework will be a valuable tool for the design and virtual screening of flame retardants and will contribute to the development of safer and more efficient polymer materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助科研通管家采纳,获得10
1秒前
美女完成签到,获得积分10
1秒前
1秒前
FashionBoy应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
赘婿应助科研通管家采纳,获得10
1秒前
1秒前
蛙鼠兔完成签到,获得积分10
2秒前
草莓伯伯给草莓伯伯的求助进行了留言
2秒前
篮球完成签到,获得积分10
3秒前
聪慧的凡灵应助Wang采纳,获得20
3秒前
3秒前
开放的大侠完成签到,获得积分10
3秒前
pianokjt完成签到,获得积分10
4秒前
温柔的幻露完成签到,获得积分10
5秒前
小谢完成签到,获得积分10
5秒前
porcelain完成签到,获得积分10
5秒前
5秒前
可爱的函函应助hui采纳,获得10
5秒前
小步快跑完成签到,获得积分10
6秒前
6秒前
一人一般完成签到,获得积分10
6秒前
xyawl425完成签到,获得积分10
6秒前
JamesPei应助hkh采纳,获得10
6秒前
秦泽咩咩关注了科研通微信公众号
7秒前
小鲨鱼完成签到,获得积分10
8秒前
9秒前
无花果应助xj305采纳,获得10
9秒前
9秒前
科研民工发布了新的文献求助10
9秒前
YMAO完成签到,获得积分10
10秒前
调皮初夏发布了新的文献求助10
10秒前
薇w发布了新的文献求助10
11秒前
lzw完成签到 ,获得积分10
11秒前
电子物理磁完成签到,获得积分20
12秒前
rysben完成签到,获得积分10
12秒前
12秒前
奋斗蜗牛完成签到,获得积分10
12秒前
高分求助中
Africanfuturism: African Imaginings of Other Times, Spaces, and Worlds 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2000
The Oxford Encyclopedia of the History of Modern Psychology 2000
Synthesis of 21-Thioalkanoic Acids of Corticosteroids 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Structural Equation Modeling of Multiple Rater Data 700
 Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 590
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3886126
求助须知:如何正确求助?哪些是违规求助? 3428236
关于积分的说明 10758754
捐赠科研通 3153010
什么是DOI,文献DOI怎么找? 1740776
邀请新用户注册赠送积分活动 840369
科研通“疑难数据库(出版商)”最低求助积分说明 785343