MMSleepGNet: Mixed Multi-Branch Sequential Fusion Model Based on Graph Convolutional Network for Automatic Sleep Staging

计算机科学 睡眠(系统调用) 卷积神经网络 人工智能 睡眠阶段 模式识别(心理学) 图形 深度学习 脑电图 多导睡眠图 理论计算机科学 心理学 精神科 操作系统
作者
Xinrong Chen,Yufang Zhao,Shu Shen,Xiao Chen
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-10 被引量:2
标识
DOI:10.1109/tim.2023.3298402
摘要

Automatic sleep staging is critical to expanding sleep assessment and diagnosis and can serve millions of people experiencing sleep deprivation and sleep disorders. However, it is difficult to extract features from multiple EEG epochs and classify all sleep stages accurately and automatically. Simultaneously, how to fuse these features is a crucial technology in automatic sleep staging. In this paper, we propose a novel sequence-to-sequence sleep staging model named MMSleepGNet, which is capable of learning a joint representation from both raw signals and time-frequency images. The proposed model abandons traditional fusion methods and employs the confidence interval of sleep stage probabilities to form the appropriate fusion strategy. The deviation caused by different center points is avoided. In the view of time-frequency image, a novel multi-branch strategy is employed at the sequence processing level. On the main branch, Graph Convolutional Network is added to mine the connections between EEG epochs to achieve faster convergence during the training procedure and more accurate classification results with fewer training times. Experimental results on two public sleep datasets, named Sleep-EDF-20 and Sleep-EDF-78, showed that the proposed multi-branch strategy based on time-frequency image displayed the good performance and achieved better overall accuracy on these two datasets. Furthermore, the fusion method based on the characteristics of frequency domain and time domain achieved an overall accuracy about 88.4% on Sleep-EDF-20 (±30mins) and 83.8% on Sleep-EDF-78 (±30mins), outperformed the state-of-the-art methods in the above datasets. This study will possibly allow us to have a precise automatic sleep staging method that has the potential to replace manual sleep staging.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
oboy应助朴素书雁采纳,获得10
刚刚
ZoeChoo完成签到,获得积分10
1秒前
lynn完成签到 ,获得积分10
1秒前
七里香完成签到 ,获得积分10
1秒前
wyg117完成签到,获得积分10
1秒前
专注钢笔完成签到 ,获得积分10
1秒前
Yvonne完成签到,获得积分10
1秒前
落晖完成签到 ,获得积分10
2秒前
clock完成签到 ,获得积分10
2秒前
投必快业必毕完成签到,获得积分10
2秒前
Ch_7完成签到,获得积分10
2秒前
drhwang发布了新的文献求助200
3秒前
樊书雪完成签到,获得积分10
3秒前
爆米花应助仁爱元冬采纳,获得10
4秒前
耳朵暴富富完成签到,获得积分10
4秒前
传奇3应助Yvonne采纳,获得10
5秒前
ShawnLyu应助科研通管家采纳,获得20
5秒前
段段砖应助科研通管家采纳,获得10
5秒前
开心就吃猕猴桃完成签到,获得积分10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
隐形曼青应助科研通管家采纳,获得10
5秒前
无花果应助科研通管家采纳,获得10
5秒前
ShawnLyu应助科研通管家采纳,获得10
5秒前
赘婿应助科研通管家采纳,获得10
5秒前
ShawnLyu应助科研通管家采纳,获得20
5秒前
热狗完成签到 ,获得积分10
5秒前
6秒前
勤恳化蛹完成签到 ,获得积分10
6秒前
6秒前
MM完成签到,获得积分10
6秒前
qq完成签到,获得积分10
6秒前
壮观的晓瑶完成签到 ,获得积分10
7秒前
汉堡包应助高高的幻莲采纳,获得10
7秒前
bigpluto完成签到,获得积分10
7秒前
无花果应助学术狗采纳,获得10
7秒前
Zero完成签到,获得积分10
7秒前
卿卿完成签到,获得积分10
7秒前
11完成签到 ,获得积分20
8秒前
zhangnan完成签到,获得积分10
8秒前
mocheer完成签到,获得积分10
8秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Pathology of Laboratory Rodents and Rabbits (5th Edition) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816043
求助须知:如何正确求助?哪些是违规求助? 3359559
关于积分的说明 10403403
捐赠科研通 3077404
什么是DOI,文献DOI怎么找? 1690297
邀请新用户注册赠送积分活动 813734
科研通“疑难数据库(出版商)”最低求助积分说明 767781