Multi-Agent Visual-Inertial Localization for Integrated Aerial Systems with Loose Fusion of Odometry and Kinematics

里程计 运动学 惯性测量装置 计算机视觉 人工智能 计算机科学 姿势 机器人 移动机器人 物理 经典力学
作者
Ganghua Lai,Chuanbeibei Shi,Kaidi Wang,Yushu Yu,Yiqun Dong,Antonio Franchi
出处
期刊:IEEE robotics and automation letters 卷期号:9 (7): 6504-6511 被引量:1
标识
DOI:10.1109/lra.2024.3407579
摘要

Reliably and efficiently estimating the relative pose and global localization of robots in a common reference for Integrated Aerial Platforms (IAPs) is a challenging problem. Unlike unmanned aerial vehicle (UAV) swarms, where the agent individual is able to move freely, IAPs connect UAV agents with mechanical joints, such as spherical joints, and form a rigid central platform, limiting the degree of freedom (DOF) of agents. Traditional methods, which rely on forming loop closures, object detection, or range sensors, suffer from degeneration or inefficiency due to the restricted relative motion between agents. In this paper, we present a centralized multi-agent localization system that fuses the internal kinematic constraints of IAPs and odometry measurements, using only visual-inertial suits for ego-motion estimation for agents and an additional 9-DOF Inertial Measurement Unit (IMU) attached to the central platform for posture estimation. A general formulation for kinematic constraints is derived without requiring knowledge about detailed kinematic parameters. A sliding-window optimization-based state estimator is constructed to estimate the relative transformation between agents. Our proposed approach is validated in our collected dataset. The results show that the proposed method reduces the global localization drift by 27.15% and relative localization error by 53.4% in the translation part and 36.99% in the rotation part compared to the baseline.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
2秒前
3秒前
3秒前
冷酷芫完成签到,获得积分10
4秒前
Akim应助允胖胖采纳,获得10
4秒前
4秒前
5秒前
科目三应助眼睛大丹蝶采纳,获得10
5秒前
JamesPei应助mumu采纳,获得10
5秒前
森ok发布了新的文献求助10
5秒前
5秒前
Xwx61010完成签到,获得积分10
6秒前
6秒前
stargazor发布了新的文献求助10
7秒前
Liuping发布了新的文献求助10
7秒前
lcs完成签到,获得积分10
8秒前
心肌细胞发布了新的文献求助10
8秒前
8秒前
Yihong发布了新的文献求助10
8秒前
9秒前
Hello应助slowride采纳,获得10
9秒前
10秒前
10秒前
dmxywzw6发布了新的文献求助10
10秒前
YTTT发布了新的文献求助10
10秒前
10秒前
11秒前
Cu完成签到 ,获得积分10
11秒前
lxb完成签到,获得积分20
11秒前
俞璐发布了新的文献求助10
12秒前
13秒前
13秒前
13秒前
陌君子筱完成签到,获得积分10
13秒前
SYLH应助gwh采纳,获得10
14秒前
乐乐应助小束爱吃樱桃采纳,获得10
14秒前
Rabbit发布了新的文献求助10
14秒前
搜集达人应助Yihong采纳,获得10
14秒前
高分求助中
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Fatigue of Materials and Structures 260
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
The Burge and Minnechaduza Clarendonian mammalian faunas of north-central Nebraska 206
An Integrated Solution for Application of Next-Generation Sequencing in Newborn Screening 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3831948
求助须知:如何正确求助?哪些是违规求助? 3374282
关于积分的说明 10484141
捐赠科研通 3094156
什么是DOI,文献DOI怎么找? 1703342
邀请新用户注册赠送积分活动 819390
科研通“疑难数据库(出版商)”最低求助积分说明 771472