已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Fusion Pretrained Approach for Identifying the Cause of Sarcasm Remarks

讽刺 人工智能 计算机科学 自然语言处理 机器学习 语言学 讽刺 哲学
作者
Qiudan Li,Jingjun Xu,Haoda Qian,Linzi Wang,Minjie Yuan,Daniel Zeng
出处
期刊:Informs Journal on Computing
标识
DOI:10.1287/ijoc.2022.0285
摘要

Sarcastic remarks often appear in social media and e-commerce platforms to express almost exclusively negative emotions and opinions on certain instances, such as dissatisfaction with a purchased product or service. Thus, the detection of sarcasm allows merchants to timely resolve users’ complaints. However, detecting sarcastic remarks is difficult because of its common form of using counterfactual statements. The few studies that are dedicated to detecting sarcasm largely ignore what sparks these sarcastic remarks, which could be because of an empty promise of a merchant’s product description. This study formulates a novel problem of sarcasm cause detection that leverages domain information, dialogue context information, and sarcasm sentences by proposing a pretrained language model-based approach equipped with a novel hybrid multihead fusion-attention mechanism that combines self-attention, target-attention, and a feed-forward neural network. The domain information and the dialogue context information are then interactively fused to obtain the domain-specific dialogue context representation, and bidirectionally enhanced sarcasm-cause pair representations are generated for detecting sarcasm spark. Experimental results on real-world data sets demonstrate the efficacy of the proposed model. The findings of this study contribute to the literature on sarcasm cause detection and provide business value to relevant stakeholders and consumers. History: Accepted by Ram Ramesh, Area Editor for Data Science and Machine Learning. Funding: This work was partially supported by the National Natural Science Foundation of China [Grants 72293575, 62071467, and 62141608] and the Research Grant Council of the Hong Kong Special Administrative Region, China [Grants 11500322 and 11500421]. Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplemental Information ( https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2022.0285 ) as well as from the IJOC GitHub software repository ( https://github.com/INFORMSJoC/2022.0285 ). The complete IJOC Software and Data Repository is available at https://informsjoc.github.io/ .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
优翎完成签到 ,获得积分10
1秒前
3秒前
Dream完成签到,获得积分0
3秒前
英姑应助解成危采纳,获得10
7秒前
Timon完成签到,获得积分10
8秒前
十三完成签到 ,获得积分10
11秒前
双手外科结完成签到,获得积分10
17秒前
共享精神应助ht_more采纳,获得10
17秒前
知性的剑身完成签到,获得积分10
22秒前
可爱的函函应助Eileen采纳,获得10
22秒前
开放素完成签到 ,获得积分10
22秒前
简单白风完成签到 ,获得积分10
23秒前
超级水壶完成签到,获得积分10
24秒前
28秒前
核桃完成签到,获得积分0
29秒前
HuLL完成签到 ,获得积分10
30秒前
ryanfeng完成签到,获得积分0
31秒前
32秒前
婼汐完成签到 ,获得积分10
32秒前
zzz完成签到 ,获得积分10
36秒前
36秒前
37秒前
英姑应助凉意采纳,获得10
38秒前
王炎欣发布了新的文献求助10
40秒前
42秒前
46秒前
feimengxia完成签到 ,获得积分10
46秒前
慕青应助玄音采纳,获得10
47秒前
xixi很困发布了新的文献求助10
47秒前
王炎欣完成签到,获得积分10
48秒前
凉意发布了新的文献求助10
50秒前
良月完成签到 ,获得积分10
50秒前
棕榈完成签到 ,获得积分10
51秒前
Bin_Liu发布了新的文献求助10
52秒前
周萌完成签到 ,获得积分10
54秒前
正直涵菱完成签到 ,获得积分10
55秒前
Akim应助hy采纳,获得10
55秒前
杀殿完成签到 ,获得积分10
55秒前
天水张家辉完成签到,获得积分10
56秒前
Jasper应助mm采纳,获得10
57秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 700
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
Ene—X Compounds (X = S, Se, Te, N, P) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4129921
求助须知:如何正确求助?哪些是违规求助? 3666776
关于积分的说明 11600286
捐赠科研通 3365203
什么是DOI,文献DOI怎么找? 1849057
邀请新用户注册赠送积分活动 912871
科研通“疑难数据库(出版商)”最低求助积分说明 828275