A Comprehensive Review on Deep Learning Techniques in Alzheimer’s Disease Diagnosis

人工智能 计算机科学 疾病 数据科学 医学 病理
作者
Anjali Mahavar,Atul Patel,Ashish Patel
出处
期刊:Current Topics in Medicinal Chemistry [Bentham Science Publishers]
卷期号:24
标识
DOI:10.2174/0115680266310776240524061252
摘要

Abstract: Alzheimer's Disease (AD) is a serious neurological illness that causes memory loss gradually by destroying brain cells. This deadly brain illness primarily strikes the elderly, impairing their cognitive and bodily abilities until brain shrinkage occurs. Modern techniques are required for an accurate diagnosis of AD. Machine learning has gained attraction in the medical field as a means of determining a person's risk of developing AD in its early stages. One of the most advanced soft computing neural network-based Deep Learning (DL) methodologies has garnered significant interest among researchers in automating early-stage AD diagnosis. Hence, a comprehensive review is necessary to gain insights into DL techniques for the advancement of more effective methods for diagnosing AD. This review explores multiple biomarkers associated with Alzheimer's Disease (AD) and various DL methodologies, including Deep Neural Networks (DNN), Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN), The k-nearest-neighbor (k-NN), Deep Boltzmann Machines (DBM), and Deep Belief Networks (DBN), which have been employed for automating the early diagnosis of AD. Moreover, the unique contributions of this review include the classification of ATN biomarkers for Alzheimer's Disease (AD), systemic description of diverse DL algorithms for early AD assessment, along with a discussion of widely utilized online datasets such as ADNI, OASIS, etc. Additionally, this review provides perspectives on future trends derived from critical evaluation of each variant of DL techniques across different modalities, dataset sources, AUC values, and accuracies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YQF完成签到,获得积分10
刚刚
iW完成签到 ,获得积分10
刚刚
yayika完成签到,获得积分10
刚刚
柔弱云朵完成签到,获得积分10
1秒前
1秒前
1秒前
Orange应助杨冰采纳,获得10
1秒前
wyg117完成签到,获得积分10
1秒前
积极乐观阳光开朗完成签到,获得积分10
1秒前
lizhaonian发布了新的文献求助10
3秒前
Aha完成签到 ,获得积分10
3秒前
lf完成签到,获得积分10
3秒前
hbpu230701完成签到,获得积分0
3秒前
lwj007完成签到,获得积分10
3秒前
antarctic_2022完成签到,获得积分10
4秒前
齐半青完成签到,获得积分10
4秒前
hilknk完成签到,获得积分10
5秒前
hhhh发布了新的文献求助10
5秒前
慕青应助shenkekeyan采纳,获得10
6秒前
6秒前
cici发布了新的文献求助30
6秒前
科研通AI5应助宫野珏采纳,获得10
6秒前
zhangnan完成签到,获得积分10
6秒前
秒秒发布了新的文献求助10
7秒前
苗条的时光完成签到,获得积分10
7秒前
从容的笑天完成签到,获得积分10
8秒前
8秒前
hony完成签到,获得积分10
8秒前
老陆完成签到,获得积分10
8秒前
Docsiwen完成签到 ,获得积分10
8秒前
现代绮玉完成签到,获得积分10
9秒前
乘风完成签到,获得积分10
9秒前
终于花开日完成签到 ,获得积分10
10秒前
道道sy完成签到,获得积分10
10秒前
11秒前
12秒前
12秒前
支妙完成签到,获得积分10
12秒前
hxl发布了新的文献求助10
13秒前
自由的奎发布了新的文献求助10
13秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784903
求助须知:如何正确求助?哪些是违规求助? 3330232
关于积分的说明 10245019
捐赠科研通 3045573
什么是DOI,文献DOI怎么找? 1671716
邀请新用户注册赠送积分活动 800646
科研通“疑难数据库(出版商)”最低求助积分说明 759577