Koopman neural operator as a mesh-free solver of non-linear partial differential equations

偏微分方程 操作员(生物学) 解算器 应用数学 人工神经网络 计算机科学 数学 数学分析 数学优化 人工智能 生物化学 转录因子 基因 抑制因子 化学
作者
Wei Xiong,Xiaomeng Huang,Ziyang Zhang,Ruixuan Deng,Pei Sun,Yang Tian
出处
期刊:Journal of Computational Physics [Elsevier BV]
卷期号:513: 113194-113194 被引量:4
标识
DOI:10.1016/j.jcp.2024.113194
摘要

The lacking of analytic solutions of diverse partial differential equations (PDEs) gives birth to a series of computational techniques for numerical solutions. Although numerous latest advances are accomplished in developing neural operators, a kind of neural-network-based PDE solver, these solvers become less accurate and explainable while learning long-term behaviors of non-linear PDE families. In this paper, we propose the Koopman neural operator (KNO), a new neural operator, to overcome these challenges. With the same objective of learning an infinite-dimensional mapping between Banach spaces that serves as the solution operator of the target PDE family, our approach differs from existing models by formulating a non-linear dynamic system of equation solution. By approximating the Koopman operator, an infinite-dimensional operator governing all possible observations of the dynamic system, to act on the flow mapping of the dynamic system, we can equivalently learn the solution of a non-linear PDE family by solving simple linear prediction problems. We validate the KNO in mesh-independent, long-term, and zero-shot predictions on five representative PDEs (e.g., the Navier-Stokes equation and the Rayleigh-Bénard convection) and three real dynamic systems (e.g., global water vapor patterns and western boundary currents). In these experiments, the KNO exhibits notable advantages compared with previous state-of-the-art models, suggesting the potential of the KNO in supporting diverse science and engineering applications (e.g., PDE solving, turbulence modeling, and precipitation forecasting).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
初心完成签到,获得积分10
3秒前
周倾窈完成签到,获得积分10
4秒前
5秒前
顾矜应助masterchen采纳,获得10
6秒前
小陈发布了新的文献求助10
6秒前
7秒前
哈哈哈完成签到 ,获得积分10
9秒前
LBJ23完成签到,获得积分10
9秒前
决明发布了新的文献求助10
10秒前
11秒前
12秒前
doctor2023完成签到,获得积分10
12秒前
Orange应助包子采纳,获得10
12秒前
younger完成签到,获得积分10
14秒前
灵巧的翠桃完成签到,获得积分10
14秒前
在水一方应助荔枝多酚采纳,获得10
15秒前
小麻薯发布了新的文献求助10
16秒前
科研通AI5应助落后志泽采纳,获得10
17秒前
18秒前
19秒前
灿华完成签到 ,获得积分10
19秒前
20秒前
22秒前
ori发布了新的文献求助10
24秒前
华仔应助王攀采纳,获得10
24秒前
Churchill87426完成签到,获得积分10
25秒前
月亮发布了新的文献求助10
25秒前
25秒前
ffw1完成签到,获得积分10
26秒前
boshi发布了新的文献求助10
28秒前
汪汪别吃了完成签到,获得积分10
29秒前
30秒前
dox应助llj采纳,获得10
30秒前
落后志泽发布了新的文献求助10
31秒前
32秒前
科研通AI2S应助心灵美金鑫采纳,获得10
32秒前
ori完成签到,获得积分10
33秒前
33秒前
Ashore发布了新的文献求助10
34秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
The Burge and Minnechaduza Clarendonian mammalian faunas of north-central Nebraska 206
Fatigue of Materials and Structures 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3831508
求助须知:如何正确求助?哪些是违规求助? 3373738
关于积分的说明 10481136
捐赠科研通 3093686
什么是DOI,文献DOI怎么找? 1702949
邀请新用户注册赠送积分活动 819215
科研通“疑难数据库(出版商)”最低求助积分说明 771307