Quantitative Associations of Polluting Chemicals and Endogenous Biomolecules in Hair: An Observational Perspective from a Population-Based Study

观察研究 透视图(图形) 生物分子 内生 人口 环境化学 生物 毒理 环境卫生 化学 医学 计算机科学 生物化学 内科学 人工智能
作者
Lulu Huang,Qilong Liao,Juanjuan Yang,Fengshan Cai,Bin Tang,Min Li,Xiao Yan,Li Li,Chun Xie,Yunjiang Yu,Jing Zheng
出处
期刊:Environmental Science and Technology Letters [American Chemical Society]
卷期号:11 (6): 518-525 被引量:2
标识
DOI:10.1021/acs.estlett.4c00325
摘要

Hair is a valuable, non-invasive material for human biomonitoring. However, little is known about polluting contaminants in hair, particularly regarding the relationship between biocomponents and contaminant levels in hair. We measured the concentrations of 42 contaminants, including 11 phosphorus flame retardants (PFRs), 13 bisphenols (BPs), and 18 perfluoroalkyl and polyfluoroalkyl substances (PFAS), while simultaneously measuring the levels of keratin, melanin, and eight sphingolipids in hair samples. Long-chain sphingolipids (C20CER) were negatively associated with levels of PFRs, PFAS, and BPs, while C12CER and C14CER (short-chain) were positively associated with levels of PFRs and BPs. Furthermore, we observed an overall negative association between ∑7PFRs and endogenous biocomponents but a positive dose–effect relationship with ∑5BPs and biocomponents using Bayesian kernel machine regression models. Among the biocomponents, C20CER and C14CER contributed the most to the negative and positive associations, respectively. Specifically, a change in Ln C20CER (Z-score) concentration from the 25th to 75th percentile was associated with a decrease in ∑7PFRs of 47.0%-SD (−61.8%, −32.3%) when other biocomponents were at their median values. These findings provide new insights into the relationships between biocomponents and contaminants in hair, which is an essential step for the advancement of hair as a biomonitoring material.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万椿完成签到,获得积分10
2秒前
2秒前
xyy2001发布了新的文献求助10
2秒前
123木头人完成签到,获得积分10
2秒前
绾妤完成签到 ,获得积分0
4秒前
Ss完成签到,获得积分10
5秒前
干净鬼神完成签到,获得积分10
6秒前
张宝完成签到,获得积分10
6秒前
基金中中中完成签到,获得积分10
7秒前
8秒前
陈曦发布了新的文献求助30
8秒前
9秒前
10秒前
稳重向南完成签到,获得积分10
14秒前
15秒前
旺仔发布了新的文献求助10
15秒前
19秒前
19秒前
Lucas应助等待问安采纳,获得10
20秒前
ziyuhewei完成签到,获得积分10
21秒前
23秒前
24秒前
24秒前
26秒前
cz完成签到,获得积分10
26秒前
zwang688完成签到,获得积分10
27秒前
cz发布了新的文献求助10
29秒前
29秒前
ww发布了新的文献求助10
30秒前
虚心的芹发布了新的文献求助10
32秒前
千玺发布了新的文献求助10
32秒前
屠俊豪发布了新的文献求助10
33秒前
Ava应助孤独的根号3采纳,获得10
35秒前
36秒前
Owen应助科研通管家采纳,获得10
37秒前
科研通AI2S应助科研通管家采纳,获得10
37秒前
Ava应助科研通管家采纳,获得10
37秒前
Jasper应助科研通管家采纳,获得10
37秒前
CipherSage应助科研通管家采纳,获得10
37秒前
37秒前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
壮语核心名词的语言地图及解释 900
Finite Groups: An Introduction 800
盐环境来源微生物多相分类及嗜盐古菌基因 组适应性与演化研究 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3910210
求助须知:如何正确求助?哪些是违规求助? 3455848
关于积分的说明 10885757
捐赠科研通 3181832
什么是DOI,文献DOI怎么找? 1758252
邀请新用户注册赠送积分活动 850713
科研通“疑难数据库(出版商)”最低求助积分说明 792176