A Novel Machine Learning Model for Efficacy Prediction of Immunotherapy-Chemotherapy in NSCLC Based on CT Radiomics

肺癌 支持向量机 医学 机器学习 人工智能 免疫疗法 计算机科学 肿瘤科 内科学 癌症
作者
Chengye Li,Zhifeng Zhou,Lingxian Hou,Ke‐Li Hu,Zongda Wu,Yupeng Xie,Jinsheng Ouyang,Xueding Cai
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:178: 108638-108638 被引量:2
标识
DOI:10.1016/j.compbiomed.2024.108638
摘要

Lung cancer is categorized into two main types: non-small cell lung cancer (NSCLC) and small cell lung cancer. Of these, NSCLC accounts for approximately 85% of all cases and encompasses varieties such as squamous cell carcinoma and adenocarcinoma. For patients with advanced NSCLC that do not have oncogene addiction, the preferred treatment approach is a combination of immunotherapy and chemotherapy. However, the progression-free survival (PFS) typically ranges only from about 6 to 8 months, accompanied by certain adverse events. In order to carry out individualized treatment more effectively, it is urgent to accurately screen patients with PFS for more than 12 months under this treatment regimen. Therefore, this study undertook a retrospective collection of pulmonary CT images from 60 patients diagnosed with NSCLC treated at the First Affiliated Hospital of Wenzhou Medical University. It developed a machine learning model, designated as bSGSRIME-SVM, which integrates the rime optimization algorithm with self-adaptive Gaussian kernel probability search (SGSRIME) and support vector machine (SVM) classifier. Specifically, the model initiates its process by employing the SGSRIME algorithm to identify pivotal image features. Subsequently, it utilizes an SVM classifier to assess these features, aiming to enhance the model's predictive accuracy. Initially, the superior optimization capability and robustness of SGSRIME in IEEE CEC 2017 benchmark functions were validated. Subsequently, employing color moments and gray-level co-occurrence matrix methods, image features were extracted from images of 60 NSCLC patients undergoing immunotherapy combined with chemotherapy. The developed model was then utilized for analysis. The results indicate a significant advantage of the model in predicting the efficacy of immunotherapy combined with chemotherapy for NSCLC, with an accuracy of 92.381% and a specificity of 96.667%. This lays the foundation for more accurate PFS predictions and personalized treatment plans.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jy完成签到,获得积分10
刚刚
1秒前
2秒前
zjh完成签到,获得积分10
3秒前
坚定的骁完成签到,获得积分10
3秒前
zhaxiao发布了新的文献求助10
3秒前
灵泽完成签到,获得积分10
3秒前
Akim应助123采纳,获得10
4秒前
4秒前
Wei发布了新的文献求助10
4秒前
沫沫完成签到 ,获得积分10
5秒前
星辰大海应助yeyongchang_hit采纳,获得10
5秒前
7秒前
7秒前
科研通AI5应助tang采纳,获得10
7秒前
Akim应助小美爱科研采纳,获得10
8秒前
菜小芽发布了新的文献求助10
8秒前
nemo发布了新的文献求助10
9秒前
今后应助愉快的宛儿采纳,获得10
9秒前
TonyLee完成签到,获得积分10
10秒前
充电宝应助rxl采纳,获得10
10秒前
10秒前
10秒前
wxqz完成签到,获得积分10
12秒前
13秒前
李西西完成签到,获得积分10
13秒前
14秒前
14秒前
Lemon发布了新的文献求助30
14秒前
15秒前
15秒前
缥缈月光发布了新的文献求助10
15秒前
任性的咖啡完成签到,获得积分10
15秒前
Vermouth完成签到,获得积分20
15秒前
AlexLee完成签到,获得积分10
17秒前
mic发布了新的文献求助10
21秒前
21秒前
21秒前
alrist发布了新的文献求助10
21秒前
21秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3794759
求助须知:如何正确求助?哪些是违规求助? 3339605
关于积分的说明 10296669
捐赠科研通 3056347
什么是DOI,文献DOI怎么找? 1676961
邀请新用户注册赠送积分活动 804963
科研通“疑难数据库(出版商)”最低求助积分说明 762244