Coordinated management of oxygen excess ratio and cathode pressure for PEMFC based on synthesis variable-gain robust predictive control

模型预测控制 阴极 质子交换膜燃料电池 氧气 变量(数学) 氧气压力 汽车工程 燃料电池 环境科学 化学 控制理论(社会学) 计算机科学 材料科学 工艺工程 工程类 化学工程 控制(管理) 电气工程 数学 人工智能 有机化学 数学分析
作者
Xin Zhang,Chunlei Zhang,Zhijin Zhang,Sen Gao,He Li
出处
期刊:Applied Energy [Elsevier BV]
卷期号:367: 123415-123415 被引量:6
标识
DOI:10.1016/j.apenergy.2024.123415
摘要

In this research endeavor, a novel synthesis variable-gain robust model predictive control (SVGRPC) method using the min-max technique with parameter dependent Lyapunov functions is introduced to achieve the desired trajectory tracking of oxygen excess ratio (OER) and cathode pressure in the polymer electrolyte membrane fuel cells (PEMFCs) system. Initially, a simplified control-oriented model of the air supply system is developed and then transformed into a polytopic form to accommodate the inherent uncertainties in the PEMFC. Subsequently, the polytopic model is integrated with the reference trajectory to construct an augmented state-space model for deriving an error state representation. In the framework of robust model predictive control (RPC) utilizing a parameter-dependent Lyapunov function, a series of variable feedback gains are employed to mitigate conservatism. Additionally, the online solution process imposes a significant computational burden, presenting challenges for the real-time implementation of RPC-based control strategy. Therefore, the offline computing is introduced to significantly reduce the computational burden, resulting in the development of the SVGRPC strategy proposed in this paper. Subsequently, the SVGRPC strategy computes explicit linear state-feedback control laws by solving linear matrix inequalities (LMIs) using an offline control algorithm. The effectiveness of the proposed controller is then validated through assessments conducted under three distinct operating conditions of the PEMFC system. The outcomes of this study affirm that the proposed controller improves the requirements of control performance when compared to the online RPC with a quadratic Lyapunov function while significantly alleviating the computational workload.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Evooolet完成签到,获得积分10
刚刚
qiu发布了新的文献求助10
1秒前
科研通AI5应助Jeff采纳,获得20
2秒前
落月铭发布了新的文献求助10
3秒前
4秒前
莫茹完成签到 ,获得积分10
5秒前
goldNAN发布了新的文献求助10
6秒前
8秒前
标致靖仇发布了新的文献求助10
9秒前
kexuedagz完成签到,获得积分10
10秒前
bkagyin应助书中月采纳,获得30
11秒前
wangrblzu应助书中月采纳,获得10
11秒前
shanage应助书中月采纳,获得10
11秒前
Orange应助书中月采纳,获得30
11秒前
dfsf发布了新的文献求助10
13秒前
13秒前
华仔应助迷路路人采纳,获得10
14秒前
顾矜应助杨桃采纳,获得10
14秒前
李健应助轻语采纳,获得10
14秒前
17秒前
Ghiocel完成签到,获得积分10
17秒前
pi完成签到 ,获得积分10
18秒前
李昶完成签到 ,获得积分10
20秒前
雪球完成签到,获得积分10
20秒前
Lucas应助任无施采纳,获得10
22秒前
SYLH应助王羊补牢采纳,获得10
22秒前
22秒前
隐形曼青应助尊敬海豚momo采纳,获得10
22秒前
23秒前
qin完成签到,获得积分10
23秒前
24秒前
搞怪的怀蕊完成签到,获得积分10
24秒前
XIAOLI应助健忘的板凳采纳,获得10
26秒前
26秒前
27秒前
CaliU完成签到,获得积分10
28秒前
28秒前
创不可贴发布了新的文献求助10
29秒前
29秒前
坦呐发布了新的文献求助10
29秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
《続天台宗全書・史伝1 天台大師伝注釈類》 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842878
求助须知:如何正确求助?哪些是违规求助? 3384881
关于积分的说明 10537922
捐赠科研通 3105474
什么是DOI,文献DOI怎么找? 1710326
邀请新用户注册赠送积分活动 823582
科研通“疑难数据库(出版商)”最低求助积分说明 774149