Focus-Attention Approach in Optimizing DETR for Object Detection from High-Resolution Images

光学(聚焦) 计算机科学 高分辨率 分辨率(逻辑) 对象(语法) 人工智能 计算机视觉 目标检测 遥感 模式识别(心理学) 地理 光学 物理
作者
Nguyen Hoanh,Tran Vu Pham
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:296: 111939-111939 被引量:3
标识
DOI:10.1016/j.knosys.2024.111939
摘要

Transformer-based detectors have recently achieved remarkable success in object detection, revolutionizing the field with their efficiency and accuracy. However, applying these models to high-resolution images presents significant challenges due to the increased computational demands and complexity of processing dense, high-resolution data. In this paper, we introduce a novel model specifically designed for object detection from high-resolution imagery. This model incorporates a multi-layer object-focus network along with a transformer encoder-decoder structure. Specifically, the model employs a dual-head strategy in the object-focus network to balance the detailed analysis of small objects with computational efficiency. This is achieved by leveraging data sparsity to reduce unnecessary computations in massive background regions. Additionally, to improve detection performance for small objects, we propose a method to effectively apply the transformer encoder-decoder structure combined with the object-focus network on the multi-layer feature maps of the feature pyramid. Our extensive evaluations of the VisDrone, MS-COCO, and UAVid datasets demonstrate that our model outperforms other DETR-based detectors in both detection accuracy and computational speed, highlighting its superior performance. These results indicate a significant advancement in the field of high-resolution object detection utilizing transformer architecture.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LiuShenglan完成签到,获得积分10
刚刚
1秒前
哈哈发布了新的文献求助10
1秒前
谢魏楠完成签到,获得积分10
1秒前
脑洞疼应助科研通管家采纳,获得30
1秒前
斯文败类应助科研通管家采纳,获得30
1秒前
SciGPT应助科研通管家采纳,获得10
1秒前
白莆发布了新的文献求助10
1秒前
科研通AI5应助科研通管家采纳,获得30
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
Owen应助科研通管家采纳,获得10
2秒前
机灵柚子应助科研通管家采纳,获得20
2秒前
2秒前
2秒前
星辰大海应助科研通管家采纳,获得10
2秒前
赘婿应助科研通管家采纳,获得10
2秒前
缥缈纲应助科研通管家采纳,获得10
2秒前
NexusExplorer应助科研通管家采纳,获得10
3秒前
爆米花应助科研通管家采纳,获得10
3秒前
彭于晏应助科研通管家采纳,获得30
3秒前
乐乐应助科研通管家采纳,获得10
3秒前
星辰大海应助科研通管家采纳,获得10
3秒前
爆米花应助科研通管家采纳,获得10
3秒前
踏实麦片完成签到,获得积分10
3秒前
烟花应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
传奇3应助科研通管家采纳,获得10
3秒前
领导范儿应助酒酿是也采纳,获得10
3秒前
4秒前
4秒前
4秒前
科研小白444完成签到,获得积分20
4秒前
CCCSJ完成签到,获得积分10
4秒前
DWJ完成签到,获得积分10
4秒前
0513flpb发布了新的文献求助10
4秒前
5秒前
饱满的小熊猫完成签到,获得积分10
5秒前
胖虎爱睡觉完成签到,获得积分10
5秒前
ll完成签到,获得积分10
6秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792984
求助须知:如何正确求助?哪些是违规求助? 3337735
关于积分的说明 10286331
捐赠科研通 3054258
什么是DOI,文献DOI怎么找? 1675917
邀请新用户注册赠送积分活动 803905
科研通“疑难数据库(出版商)”最低求助积分说明 761598