亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Early symptom change contributes to the outcome prediction of cognitive behavioral therapy for depression patients: A machine learning approach

萧条(经济学) 焦虑 心理学 认知 临床心理学 精神科 宏观经济学 经济
作者
Fang Li,Frederike Jörg,Maarten J. M. Merkx,Talitha Feenstra
出处
期刊:Journal of Affective Disorders [Elsevier]
卷期号:334: 352-357 被引量:3
标识
DOI:10.1016/j.jad.2023.04.111
摘要

Limited evidence exists regarding the association between early symptom change and later outcomes of cognitive behavioral therapy (CBT). This study aimed to apply machine learning algorithms to predict continuous treatment outcomes based on pre-treatment predictors and early symptom changes and to uncover whether additional variance could be explained compared to regression methods. Additionally, the study examined early subscale symptom changes to determine the most significant predictors of treatment outcome.We investigated CBT outcomes in a large naturalistic dataset (N = 1975 depression patients). The sociodemographic profile, pre-treatment predictors, and early symptom change, including total and subscale scores were used to predict the Symptom Questionnaire (SQ)48 score at the 10th session as a continuous outcome. Different machine learners were compared to linear regression.Early symptom change and baseline symptom score were the only significant predictors. Models with early symptom change explained 22.0 % to 23.3 % more variance than those without early symptom change. Specifically, the baseline total symptom score, and the early symptom score changes of the subscales pertaining to depression and anxiety were the top three predictors of treatment outcome.Excluded patients with missing treatment outcomes had slightly higher symptom scores at baseline, indicating possible selection bias.Early symptom change improved the prediction of treatment outcomes. The prediction performance achieved is far from clinical relevance: the best learner could only explain 51.2 % of the variance in outcomes. Compared to linear regression, more sophisticated preprocessing and learning methods did not substantially improve performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
4秒前
yhh完成签到 ,获得积分10
8秒前
Criminology34应助科研通管家采纳,获得10
22秒前
Criminology34应助科研通管家采纳,获得10
22秒前
天天快乐应助科研通管家采纳,获得20
22秒前
Criminology34应助科研通管家采纳,获得10
22秒前
lsl应助科研通管家采纳,获得10
22秒前
lsl应助科研通管家采纳,获得10
22秒前
聪慧芷巧完成签到,获得积分10
41秒前
111关注了科研通微信公众号
49秒前
57秒前
十二发布了新的文献求助10
1分钟前
重要板凳完成签到 ,获得积分10
1分钟前
123完成签到,获得积分10
1分钟前
1分钟前
123发布了新的文献求助10
1分钟前
Ava应助十二采纳,获得10
1分钟前
meow完成签到 ,获得积分10
1分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
lsl应助科研通管家采纳,获得10
2分钟前
lsl应助科研通管家采纳,获得10
2分钟前
lsl应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
佳佳发布了新的文献求助10
2分钟前
鳗鱼忆山完成签到 ,获得积分10
2分钟前
佳佳完成签到,获得积分20
3分钟前
3分钟前
无无完成签到 ,获得积分10
3分钟前
3分钟前
小A同学发布了新的文献求助10
3分钟前
小A同学完成签到,获得积分10
4分钟前
汉堡包应助aydidar采纳,获得10
4分钟前
lsl应助科研通管家采纳,获得10
4分钟前
4分钟前
HC发布了新的文献求助10
4分钟前
aydidar发布了新的文献求助10
4分钟前
4分钟前
ding应助HC采纳,获得30
4分钟前
领导范儿应助Ruby采纳,获得10
4分钟前
高分求助中
From Victimization to Aggression 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5644764
求助须知:如何正确求助?哪些是违规求助? 4765318
关于积分的说明 15025565
捐赠科研通 4803089
什么是DOI,文献DOI怎么找? 2567925
邀请新用户注册赠送积分活动 1525479
关于科研通互助平台的介绍 1485004