Self-Supervised Image Denoising for Real-World Images With Context-Aware Transformer

人工智能 计算机科学 模式识别(心理学) 降噪 计算机视觉 特征提取 变压器 工程类 电气工程 电压
作者
Dan Zhang,Fangfang Zhou
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 14340-14349 被引量:44
标识
DOI:10.1109/access.2023.3243829
摘要

In recent years, the development of deep learning has been pushing image denoising to a new level. Among them, self-supervised denoising is increasingly popular because it does not require any prior knowledge. Most of the existing self-supervised methods are based on convolutional neural networks (CNN), which are restricted by the locality of the receptive field and would cause color shifts or textures loss. In this paper, we propose a novel Denoise Transformer for real-world image denoising, which is mainly constructed with Context-aware Denoise Transformer (CADT) units and Secondary Noise Extractor (SNE) block. CADT is designed as a dual-branch structure, where the global branch uses a window-based Transformer encoder to extract the global information, while the local branch focuses on the extraction of local features with small receptive field. By incorporating CADT as basic components, we build a hierarchical network to directly learn the noise distribution information through residual learning and obtain the first stage denoised output. Then, we design SNE in low computation for secondary global noise extraction. Finally the blind spots are collected from the Denoise Transformer output and reconstructed, forming the final denoised image. Extensive experiments on the real-world SIDD benchmark achieve 50.62/0.990 for PSNR/SSIM, which is competitive with the current state-of-the-art method and only 0.17/0.001 lower. Visual comparisons on public sRGB, Raw-RGB and greyscale datasets prove that our proposed Denoise Transformer has a competitive performance, especially on blurred textures and low-light images, without using additional knowledge, e.g., noise level or noise type, regarding the underlying unknown noise.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
火星上的无声完成签到,获得积分10
刚刚
努恩完成签到,获得积分10
刚刚
万能图书馆应助巫雍采纳,获得10
刚刚
毛毛发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
1秒前
1秒前
hhhbbb完成签到,获得积分10
1秒前
思源应助半夜炒茄子采纳,获得10
2秒前
ttlash完成签到,获得积分10
2秒前
2秒前
自信安荷完成签到,获得积分10
2秒前
JL完成签到,获得积分10
2秒前
rachel发布了新的文献求助10
2秒前
英俊雅柏完成签到,获得积分10
2秒前
李诚信发布了新的文献求助10
3秒前
2233完成签到,获得积分10
3秒前
3秒前
机灵的白羊完成签到 ,获得积分10
3秒前
无花果应助沐沐ni采纳,获得10
4秒前
Ula完成签到,获得积分10
5秒前
计算机算了完成签到,获得积分10
6秒前
研友_n0kYwL完成签到,获得积分10
6秒前
富贵儿完成签到 ,获得积分10
6秒前
6秒前
6秒前
SciGPT应助等待黎明采纳,获得10
6秒前
自由伊完成签到,获得积分10
6秒前
6秒前
7秒前
poplin完成签到,获得积分10
7秒前
欢乐的辞南完成签到 ,获得积分10
7秒前
许鑫鑫完成签到,获得积分10
7秒前
李爱国应助Kiki采纳,获得10
8秒前
8秒前
科目三应助小小采纳,获得10
9秒前
禾苗发布了新的文献求助10
9秒前
宗剑完成签到,获得积分10
9秒前
卡皮巴拉发布了新的文献求助10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5080327
求助须知:如何正确求助?哪些是违规求助? 4298282
关于积分的说明 13390804
捐赠科研通 4121842
什么是DOI,文献DOI怎么找? 2257344
邀请新用户注册赠送积分活动 1261652
关于科研通互助平台的介绍 1195768