Causal Inference in Transcriptome-Wide Association Studies with Invalid Instruments and GWAS Summary Data

孟德尔随机化 全基因组关联研究 因果推理 推论 混淆 计算机科学 样本量测定 遗传关联 工具变量 回归 错误发现率 单核苷酸多态性 统计 计算生物学 人工智能 生物 数学 机器学习 遗传学 基因 遗传变异 基因型
作者
Haoran Xue,Xiaotong Shen,Wei Pan
出处
期刊:Journal of the American Statistical Association [Taylor & Francis]
卷期号:: 1-27 被引量:1
标识
DOI:10.1080/01621459.2023.2183127
摘要

Transcriptome-Wide Association Studies (TWAS) have recently emerged as a popular tool to discover (putative) causal genes by integrating an outcome GWAS dataset with another gene expression/transcriptome GWAS (called eQTL) dataset. In our motivating and target application, we’d like to identify causal genes for Low-Density Lipoprotein cholesterol (LDL), which is crucial for developing new treatments for hyperlipidemia and cardiovascular diseases. The statistical principle underlying TWAS is (two-sample) two-stage least squares (2SLS) using multiple correlated SNPs as instrumental variables (IVs); it is closely related to typical (two-sample) Mendelian randomization (MR) using independent SNPs as IVs, which is expected to be impractical and lower-powered for TWAS (and some other) applications. However, often some of the SNPs used may not be valid IVs, for example, due to the widespread pleiotropy of their direct effects on the outcome not mediated through the gene of interest, leading to false conclusions by TWAS (or MR). Building on recent advances in sparse regression, we propose a robust and efficient inferential method to account for both hidden confounding and some invalid IVs via two-stage constrained maximum likelihood (2ScML), an extension of 2SLS. We first develop the proposed method with individual-level data, then extend it both theoretically and computationally to GWAS summary data for the most popular two-sample TWAS design, to which almost all existing robust IV regression methods are however not applicable. We show that the proposed method achieves asymptotically valid statistical inference on causal effects, demonstrating its wider applicability and superior finite-sample performance over the standard 2SLS/TWAS (and MR). We apply the methods to identify putative causal genes for LDL by integrating large-scale lipid GWAS summary data with eQTL data. Supplementary materials for this article are available online.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
loey发布了新的文献求助10
刚刚
2秒前
lvsehx发布了新的文献求助10
4秒前
热情思天完成签到,获得积分10
5秒前
阳和启蛰完成签到 ,获得积分10
8秒前
123321完成签到 ,获得积分10
9秒前
小彤完成签到 ,获得积分10
9秒前
CodeCraft应助lumia采纳,获得10
9秒前
guoguo完成签到 ,获得积分10
13秒前
大坚果发布了新的文献求助10
15秒前
杨。。完成签到 ,获得积分10
19秒前
郭泓嵩完成签到,获得积分10
20秒前
香蕉觅云应助ze采纳,获得10
20秒前
风一样的我完成签到,获得积分10
20秒前
猪肉超人菜婴蚊完成签到,获得积分10
26秒前
打打应助冯昊采纳,获得10
28秒前
大个应助丸子_2025000采纳,获得10
31秒前
传奇3应助lvsehx采纳,获得10
31秒前
小二郎应助yuqinghui98采纳,获得10
33秒前
科目三应助婷婷采纳,获得10
34秒前
34秒前
Herisland完成签到 ,获得积分10
34秒前
35秒前
36秒前
39秒前
kun完成签到 ,获得积分10
39秒前
ze发布了新的文献求助10
39秒前
冯昊发布了新的文献求助10
40秒前
安安发布了新的文献求助10
41秒前
大恐龙完成签到,获得积分10
41秒前
1111chen发布了新的文献求助10
44秒前
蓝色白羊完成签到,获得积分10
45秒前
聪明平灵完成签到,获得积分10
45秒前
45秒前
47秒前
婷婷发布了新的文献求助10
48秒前
ze完成签到,获得积分20
48秒前
任性的凝云完成签到,获得积分10
49秒前
1111chen完成签到 ,获得积分10
51秒前
小二郎应助聪明平灵采纳,获得10
51秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Individualized positive end-expiratory pressure in laparoscopic surgery: a randomized controlled trial 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3761753
求助须知:如何正确求助?哪些是违规求助? 3305518
关于积分的说明 10134626
捐赠科研通 3019564
什么是DOI,文献DOI怎么找? 1658226
邀请新用户注册赠送积分活动 791974
科研通“疑难数据库(出版商)”最低求助积分说明 754751