Causal Inference in Transcriptome-Wide Association Studies with Invalid Instruments and GWAS Summary Data

孟德尔随机化 全基因组关联研究 因果推理 推论 混淆 计算机科学 样本量测定 遗传关联 工具变量 回归 错误发现率 单核苷酸多态性 统计 计算生物学 人工智能 生物 数学 机器学习 遗传学 基因 遗传变异 基因型
作者
Haoran Xue,Xiaotong Shen,Wei Pan
出处
期刊:Journal of the American Statistical Association [Informa]
卷期号:: 1-27 被引量:1
标识
DOI:10.1080/01621459.2023.2183127
摘要

Transcriptome-Wide Association Studies (TWAS) have recently emerged as a popular tool to discover (putative) causal genes by integrating an outcome GWAS dataset with another gene expression/transcriptome GWAS (called eQTL) dataset. In our motivating and target application, we’d like to identify causal genes for Low-Density Lipoprotein cholesterol (LDL), which is crucial for developing new treatments for hyperlipidemia and cardiovascular diseases. The statistical principle underlying TWAS is (two-sample) two-stage least squares (2SLS) using multiple correlated SNPs as instrumental variables (IVs); it is closely related to typical (two-sample) Mendelian randomization (MR) using independent SNPs as IVs, which is expected to be impractical and lower-powered for TWAS (and some other) applications. However, often some of the SNPs used may not be valid IVs, for example, due to the widespread pleiotropy of their direct effects on the outcome not mediated through the gene of interest, leading to false conclusions by TWAS (or MR). Building on recent advances in sparse regression, we propose a robust and efficient inferential method to account for both hidden confounding and some invalid IVs via two-stage constrained maximum likelihood (2ScML), an extension of 2SLS. We first develop the proposed method with individual-level data, then extend it both theoretically and computationally to GWAS summary data for the most popular two-sample TWAS design, to which almost all existing robust IV regression methods are however not applicable. We show that the proposed method achieves asymptotically valid statistical inference on causal effects, demonstrating its wider applicability and superior finite-sample performance over the standard 2SLS/TWAS (and MR). We apply the methods to identify putative causal genes for LDL by integrating large-scale lipid GWAS summary data with eQTL data. Supplementary materials for this article are available online.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yatou5651发布了新的文献求助10
1秒前
Akim应助和谐乌龟采纳,获得10
1秒前
peng完成签到,获得积分20
2秒前
CipherSage应助汉关采纳,获得10
2秒前
3秒前
3秒前
3秒前
丘比特应助XM采纳,获得10
3秒前
bkagyin应助Blue_Pig采纳,获得10
4秒前
5秒前
6秒前
6秒前
完美世界应助加油加油采纳,获得10
7秒前
7秒前
8秒前
ns发布了新的文献求助30
10秒前
11111发布了新的文献求助10
10秒前
11秒前
药学牛马完成签到,获得积分10
11秒前
张zi发布了新的文献求助10
12秒前
yatou5651发布了新的文献求助10
13秒前
13秒前
小魏不学无术完成签到,获得积分10
13秒前
木棉发布了新的文献求助10
13秒前
A1234发布了新的文献求助10
14秒前
英俊的铭应助弄井采纳,获得30
14秒前
小二郎应助Dean采纳,获得10
15秒前
故意的冰淇淋完成签到 ,获得积分10
15秒前
15秒前
远方完成签到,获得积分10
16秒前
kiminonawa完成签到,获得积分0
17秒前
zrz完成签到,获得积分10
17秒前
18秒前
传奇3应助morlison采纳,获得10
18秒前
21秒前
21秒前
22秒前
23秒前
乐呀完成签到,获得积分10
23秒前
木头人呐完成签到 ,获得积分10
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808