Causal Inference in Transcriptome-Wide Association Studies with Invalid Instruments and GWAS Summary Data

孟德尔随机化 全基因组关联研究 因果推理 推论 混淆 计算机科学 样本量测定 遗传关联 工具变量 回归 错误发现率 单核苷酸多态性 统计 计算生物学 人工智能 生物 数学 机器学习 遗传学 基因 遗传变异 基因型
作者
Haoran Xue,Xiaotong Shen,Wei Pan
出处
期刊:Journal of the American Statistical Association [Taylor & Francis]
卷期号:: 1-27 被引量:1
标识
DOI:10.1080/01621459.2023.2183127
摘要

Transcriptome-Wide Association Studies (TWAS) have recently emerged as a popular tool to discover (putative) causal genes by integrating an outcome GWAS dataset with another gene expression/transcriptome GWAS (called eQTL) dataset. In our motivating and target application, we’d like to identify causal genes for Low-Density Lipoprotein cholesterol (LDL), which is crucial for developing new treatments for hyperlipidemia and cardiovascular diseases. The statistical principle underlying TWAS is (two-sample) two-stage least squares (2SLS) using multiple correlated SNPs as instrumental variables (IVs); it is closely related to typical (two-sample) Mendelian randomization (MR) using independent SNPs as IVs, which is expected to be impractical and lower-powered for TWAS (and some other) applications. However, often some of the SNPs used may not be valid IVs, for example, due to the widespread pleiotropy of their direct effects on the outcome not mediated through the gene of interest, leading to false conclusions by TWAS (or MR). Building on recent advances in sparse regression, we propose a robust and efficient inferential method to account for both hidden confounding and some invalid IVs via two-stage constrained maximum likelihood (2ScML), an extension of 2SLS. We first develop the proposed method with individual-level data, then extend it both theoretically and computationally to GWAS summary data for the most popular two-sample TWAS design, to which almost all existing robust IV regression methods are however not applicable. We show that the proposed method achieves asymptotically valid statistical inference on causal effects, demonstrating its wider applicability and superior finite-sample performance over the standard 2SLS/TWAS (and MR). We apply the methods to identify putative causal genes for LDL by integrating large-scale lipid GWAS summary data with eQTL data. Supplementary materials for this article are available online.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
东东发布了新的文献求助10
2秒前
2秒前
郁金香完成签到,获得积分10
4秒前
丘比特应助202483067采纳,获得10
4秒前
Echoheart发布了新的文献求助10
4秒前
5秒前
mc完成签到 ,获得积分10
5秒前
脑洞疼应助雨曦采纳,获得10
6秒前
福祸相依完成签到,获得积分10
6秒前
ty心明亮完成签到 ,获得积分10
7秒前
随遇而安完成签到 ,获得积分10
8秒前
领导范儿应助gsgg采纳,获得10
9秒前
9秒前
噜噜噜噜噜完成签到,获得积分10
11秒前
小方完成签到,获得积分10
11秒前
hy完成签到 ,获得积分10
11秒前
12秒前
东东发布了新的文献求助10
12秒前
诺奖就在前方完成签到,获得积分10
12秒前
13秒前
oguricap完成签到,获得积分10
14秒前
荔枝吖发布了新的文献求助10
14秒前
earnest完成签到,获得积分10
15秒前
16秒前
雨曦完成签到,获得积分10
16秒前
CNS_Fighter88发布了新的文献求助10
17秒前
17秒前
毅力鸟完成签到,获得积分10
17秒前
雨曦发布了新的文献求助10
19秒前
风中夜天发布了新的文献求助10
19秒前
年轻迪奥完成签到,获得积分10
20秒前
简易完成签到,获得积分10
20秒前
朴素的飞丹完成签到 ,获得积分10
20秒前
东东发布了新的文献求助10
21秒前
little佳完成签到,获得积分10
22秒前
芹菜完成签到,获得积分10
23秒前
小花发布了新的文献求助10
24秒前
苏苏苏完成签到 ,获得积分10
24秒前
王琳完成签到,获得积分10
25秒前
25秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801141
求助须知:如何正确求助?哪些是违规求助? 3346790
关于积分的说明 10330402
捐赠科研通 3063155
什么是DOI,文献DOI怎么找? 1681388
邀请新用户注册赠送积分活动 807549
科研通“疑难数据库(出版商)”最低求助积分说明 763728