TS-GAN: Time-series GAN for Sensor-based Health Data Augmentation

鉴别器 计算机科学 稳健性(进化) 深度学习 人工智能 机器学习 发电机(电路理论) 数据挖掘 模式识别(心理学) 基因 探测器 物理 电信 功率(物理) 化学 量子力学 生物化学
作者
Zhenyu Yang,Yantao Li,Gang Zhou
出处
期刊:ACM transactions on computing for healthcare [Association for Computing Machinery]
卷期号:4 (2): 1-21 被引量:21
标识
DOI:10.1145/3583593
摘要

Deep learning has achieved significant success on intelligent medical treatments, such as automatic diagnosis and analysis of medical data. To train an automatic diagnosis system with high accuracy and strong robustness in healthcare, sufficient training data are required when using deep learning-based methods. However, given that the data collected by sensors that are embedded in medical or mobile devices are inadequate, it is challenging to train an effective and efficient classification model with state-of-the-art performance. Inspired by generative adversarial networks (GANs), we propose TS-GAN, a Time-series GAN architecture based on long short-term memory (LSTM) networks for sensor-based health data augmentation, thereby improving the performance of deep learning-based classification models. TS-GAN aims to learn a generative model that creates time-series data with the same space and time dependence as the real data. Specifically, we design an LSTM-based generator for creating realistic data and an LSTM-based discriminator for determining how similar the generated data are to real data. In particular, we design a sequential-squeeze-and-excitation module in the LSTM-based discriminator to better understand space dependence of real data, and apply the gradient penalty originated from Wasserstein GANs in the training process to stabilize the optimization. We conduct comparative experiments to evaluate the performance of TS-GAN with TimeGAN, C-RNN-GAN and Conditional Wasserstein GANs through discriminator loss, maximum mean discrepancy, visualization methods and classification accuracy on health datasets of ECG_200, NonInvasiveFatalECG_Thorax1, and mHealth, respectively. The experimental results show that TS-GAN exceeds other state-of-the-art time-series GANs in almost all the evaluation metrics, and the classifier trained on synthetic datasets generated by TS-GAN achieves the highest classification accuracy of 97.50% on ECG_200, 94.12% on NonInvasiveFatalECG_Thorax1, and 98.12% on mHealth, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
YY应助qingran采纳,获得10
2秒前
zho应助兔孖采纳,获得10
3秒前
小马甲应助yueming采纳,获得30
3秒前
jyp111应助gumausi采纳,获得10
4秒前
5秒前
不吃笨鱼完成签到,获得积分10
5秒前
三年不洗澡完成签到 ,获得积分10
6秒前
纳米完成签到,获得积分10
6秒前
obito完成签到,获得积分10
8秒前
怕黑凤妖完成签到 ,获得积分10
8秒前
湫枫发布了新的文献求助10
9秒前
10秒前
12秒前
13秒前
15秒前
火羽白然完成签到 ,获得积分10
17秒前
yy完成签到 ,获得积分10
18秒前
18秒前
湫枫完成签到,获得积分10
18秒前
yueming发布了新的文献求助30
19秒前
21秒前
12彡发布了新的文献求助10
21秒前
科研通AI5应助稳重奇异果采纳,获得10
21秒前
23秒前
打打应助得一采纳,获得10
24秒前
m123完成签到,获得积分10
25秒前
隐形曼青应助Maydalian采纳,获得10
25秒前
25秒前
公冶凡波完成签到,获得积分10
26秒前
呆呆熊完成签到,获得积分10
27秒前
gumausi完成签到,获得积分10
28秒前
lllll发布了新的文献求助10
29秒前
Amber完成签到,获得积分10
32秒前
魏骜琦发布了新的文献求助10
36秒前
36秒前
37秒前
mzk完成签到,获得积分20
40秒前
Peng丶Young发布了新的文献求助10
41秒前
852应助段辉采纳,获得10
42秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3787120
求助须知:如何正确求助?哪些是违规求助? 3332779
关于积分的说明 10257438
捐赠科研通 3048189
什么是DOI,文献DOI怎么找? 1673009
邀请新用户注册赠送积分活动 801549
科研通“疑难数据库(出版商)”最低求助积分说明 760287