Interpretable Multi-Sensor Fusion of Optical and SAR Data for GEDI-Based Canopy Height Mapping in Southeastern North Carolina

遥感 天蓬 环境科学 传感器融合 地理 计算机科学 人工智能 考古
作者
Chao Wang,Conghe Song,Todd A. Schroeder,Curtis E. Woodcock,Tamlin M. Pavelsky,Qianqian Han,Fangfang Yao
出处
期刊:Remote Sensing [MDPI AG]
卷期号:17 (9): 1536-1536 被引量:2
标识
DOI:10.3390/rs17091536
摘要

Accurately monitoring forest canopy height is crucial for sustainable forest management, particularly in southeastern North Carolina, USA, where dense forests and limited accessibility pose substantial challenges. This study presents an explainable machine learning framework that integrates sparse GEDI LiDAR samples with multi-sensor remote sensing data to improve both the accuracy and interpretability of forest canopy height estimation. This framework incorporates multitemporal optical observations from Sentinel-2; C-band backscatter and InSAR coherence from Sentinel-1; quad-polarization L-Band backscatter and polarimetric decompositions from the Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR); texture features from the National Agriculture Imagery Program (NAIP) aerial photography; and topographic data derived from an airborne LiDAR-based digital elevation model. We evaluated four machine learning algorithms, K-nearest neighbors (KNN), random forest (RF), support vector machine (SVM), and eXtreme gradient boosting (XGB), and found consistent accuracy across all models. Our evaluation highlights our method’s robustness, evidenced by closely matched R2 and RMSE values across models: KNN (R2 of 0.496, RMSE of 5.13 m), RF (R2 of 0.510, RMSE of 5.06 m), SVM (R2 of 0.544, RMSE of 4.88 m), and XGB (R2 of 0.548, RMSE of 4.85 m). The integration of comprehensive feature sets, as opposed to subsets, yielded better results, underscoring the value of using multisource remotely sensed data. Crucially, SHapley Additive exPlanations (SHAP) revealed the multi-seasonal red-edge spectral bands of Sentinel-2 as dominant predictors across models, while volume scattering from UAVSAR emerged as a key driver in tree-based algorithms. This study underscores the complementary nature of multi-sensor data and highlights the interpretability of our models. By offering spatially continuous, high-quality canopy height estimates, this cost-effective, data-driven approach advances large-scale forest management and environmental monitoring, paving the way for improved decision-making and conservation strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
传奇3应助czyimba采纳,获得10
2秒前
我是老大应助咯咚采纳,获得10
2秒前
giucher完成签到,获得积分10
3秒前
xwwisher发布了新的文献求助10
3秒前
3秒前
3秒前
赵立宁发布了新的文献求助10
4秒前
5秒前
下文献的蜉蝣完成签到 ,获得积分10
5秒前
tigger发布了新的文献求助10
5秒前
huhuhuuh发布了新的文献求助10
6秒前
汉堡包应助留胡子的大楚采纳,获得10
6秒前
6秒前
hy1234发布了新的文献求助10
6秒前
7秒前
番茄炒蛋完成签到,获得积分10
7秒前
8秒前
天天快乐应助秀丽的远山采纳,获得10
8秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
11秒前
赵立宁完成签到,获得积分10
11秒前
世界小奇发布了新的文献求助10
12秒前
12秒前
13秒前
冷傲士萧发布了新的文献求助10
14秒前
15秒前
15秒前
无极微光应助tulips采纳,获得20
15秒前
16秒前
16秒前
shirly发布了新的文献求助10
16秒前
17秒前
lllllljmjmjm发布了新的文献求助10
17秒前
19秒前
茶送白粥发布了新的文献求助10
20秒前
czyimba发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Handbook of Spirituality, Health, and Well-Being 800
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5526942
求助须知:如何正确求助?哪些是违规求助? 4616873
关于积分的说明 14556205
捐赠科研通 4555440
什么是DOI,文献DOI怎么找? 2496353
邀请新用户注册赠送积分活动 1476654
关于科研通互助平台的介绍 1448212