Abstract 3661: TeloPred: A machine learning classification webserver for prediction of small molecules as telomerase inhibitors for anti-cancer drug development

癌症 端粒酶 药品 小分子 计算生物学 医学 生物 药理学 内科学 生物化学 基因
作者
Divpreet Kaur,Daman Saluja,Madhu Chopra
出处
期刊:Cancer Research [American Association for Cancer Research]
卷期号:85 (8_Supplement_1): 3661-3661
标识
DOI:10.1158/1538-7445.am2025-3661
摘要

Abstract Introduction: Telomerase activity is upregulated in 85-90% of cancers, making it a critical therapeutic target. However, the development of small-molecule inhibitors targeting telomerase is hindered by structural complexity and limited resources for three decades since its discovery. To bridge the gap, we present TeloPred—a pioneering structure-activity machine learning classification model for predicting small-molecules as telomerase inhibitors, advancing anti-cancer drug discovery. Methodology: TeloPred was developed using a curated dataset of telomerase inhibitors with IC50 values from ChEMBL. After preprocessing, key molecular properties (e.g., molecular weight, TPSA) were calculated using RDKit, and compounds were classified as active/inactive based on a pIC50 cutoff of 5.2 nM. Informative features were selected using variance thresholding and Recursive Feature Elimination (RFE) from each of the 12 molecular fingerprints generated with PaDEL software. The dataset was split (80% training, 20% testing), and six machine learning algorithms (e.g., Random Forest, SVC, XGBoost, AdaBoost) were trained, fine-tuned, and evaluated using metrics like accuracy, F1 score and AUC-ROC. The best model underwent external validation with a decoy set, SHAP analysis for interpretability, and screening of a natural compound library. TeloPred will be soon available on a public webserver for global use. Results: Data preprocessing reduced 388 compounds to 281. Exploratory analysis showed distinct clustering of active/inactive compounds based on properties like molecular weight, aromaticity, TPSA and H-Bond donor and acceptors. Among tested models, Support vector classifier performed best, achieving 87.2% accuracy on the test set and 89% on training, with low false positives/negatives. External validation yielded an enrichment factor of 21, indicating strong predictive strength of model. SHAP analysis revealed aromatic groups, amide linkage, and carbonyl groups as critical for telomerase inhibition. Screening a natural compound library narrowed the search space by 83%, identifying 10 leads with high predicted probabilities and QED scores which are under experimental validation. Conclusion: TeloPred is the first ML classification model designed to effectively distinguish telomerase inhibitors, enabling efficient virtual screening of large libraries. It minimizes attrition rates compared to traditional high-throughput screening (HTS) methods, offering a powerful tool to accelerate telomerase-targeted drug discovery for cancer treatment. Its availability as a publicly accessible resource further amplifies its impact on global research efforts to drive precision medicine. Citation Format: Divpreet Kaur, Daman Saluja, Madhu Chopra. TeloPred: A machine learning classification webserver for prediction of small molecules as telomerase inhibitors for anti-cancer drug development [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2025; Part 1 (Regular Abstracts); 2025 Apr 25-30; Chicago, IL. Philadelphia (PA): AACR; Cancer Res 2025;85(8_Suppl_1):Abstract nr 3661.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
希望天下0贩的0应助Captain采纳,获得10
刚刚
小青蛙OA发布了新的文献求助10
刚刚
2秒前
科研通AI2S应助进_采纳,获得10
3秒前
随风而逝完成签到,获得积分10
4秒前
顾矜应助莫里采纳,获得10
4秒前
4秒前
4秒前
seventonight2完成签到,获得积分10
5秒前
5秒前
那地方发布了新的文献求助30
5秒前
5秒前
老饕发布了新的文献求助10
5秒前
5秒前
酷波er应助凉笙墨染采纳,获得10
5秒前
梓曦完成签到,获得积分10
6秒前
11111完成签到,获得积分10
6秒前
6秒前
6秒前
彭于晏应助cghmfgh采纳,获得10
6秒前
是容许鸭完成签到 ,获得积分10
7秒前
haning发布了新的文献求助10
7秒前
7秒前
CipherSage应助devin578632采纳,获得10
8秒前
9秒前
9秒前
yangzhang完成签到,获得积分10
9秒前
孙季沅发布了新的文献求助10
10秒前
10秒前
憨憨完成签到,获得积分10
10秒前
Yana__Chan发布了新的文献求助10
10秒前
wen完成签到,获得积分10
11秒前
大模型应助dogontree采纳,获得10
11秒前
11秒前
酸萝卜发布了新的文献求助10
11秒前
科研通AI5应助大意采纳,获得30
12秒前
汉堡包应助hou采纳,获得10
12秒前
Lucas应助七月采纳,获得10
12秒前
12秒前
张777粒粒发布了新的文献求助10
12秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3794083
求助须知:如何正确求助?哪些是违规求助? 3339053
关于积分的说明 10293493
捐赠科研通 3055543
什么是DOI,文献DOI怎么找? 1676722
邀请新用户注册赠送积分活动 804678
科研通“疑难数据库(出版商)”最低求助积分说明 762038