Advancements in large language model accuracy for answering physical medicine and rehabilitation board review questions

医学 康复 集合(抽象数据类型) 痹症科 物理疗法 心理干预 冲程(发动机) 物理医学与康复 内科学 计算机科学 护理部 工程类 机械工程 程序设计语言
作者
Jason Bitterman,Alexander D’Angelo,Alexandra Holachek,James E. Eubanks
出处
期刊:Pm&r [Wiley]
卷期号:17 (9): 1091-1096 被引量:1
标识
DOI:10.1002/pmrj.13386
摘要

Abstract Background There have been significant advances in machine learning and artificial intelligence technology over the past few years, leading to the release of large language models (LLMs) such as ChatGPT. There are many potential applications for LLMs in health care, but it is critical to first determine how accurate LLMs are before putting them into practice. No studies have evaluated the accuracy and precision of LLMs in responding to questions related to the field of physical medicine and rehabilitation (PM&R). Objective To determine the accuracy and precision of two OpenAI LLMs (GPT‐3.5, released in November 2022, and GPT‐4o, released in May 2024) in answering questions related to PM&R knowledge. Design Cross‐sectional study. Both LLMs were tested on the same 744 PM&R knowledge questions that covered all aspects of the field (general rehabilitation, stroke, traumatic brain injury, spinal cord injury, musculoskeletal medicine, pain medicine, electrodiagnostic medicine, pediatric rehabilitation, prosthetics and orthotics, rheumatology, and pharmacology). Each LLM was tested three times on the same question set to assess for precision. Setting N/A. Patients N/A. Interventions N/A. Main Outcome Measure Percentage of correctly answered questions. Results For three runs of the 744‐question set, GPT‐3.5 answered 56.3%, 56.5%, and 56.9% of the questions correctly. For three runs of the same question set, GPT‐4o answered 83.6%, 84%, and 84.1% of the questions correctly. GPT‐4o outperformed GPT‐3.5 in all subcategories of PM&R questions. Conclusions LLM technology is rapidly advancing, with the more recent GPT‐4o model performing much better on PM&R knowledge questions compared to GPT‐3.5. There is potential for LLMs in augmenting clinical practice, medical training, and patient education. However, the technology has limitations and physicians should remain cautious in using it in practice at this time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
归尘发布了新的文献求助30
1秒前
washing_e发布了新的文献求助10
1秒前
WJ完成签到,获得积分10
1秒前
张选手十四号万岁完成签到,获得积分10
2秒前
kkkkjbbb发布了新的文献求助10
3秒前
3秒前
华仔应助调皮的天真采纳,获得10
4秒前
4秒前
4秒前
李健应助pilgrim采纳,获得10
5秒前
orixero应助小曾科研顺利采纳,获得10
5秒前
landolu发布了新的文献求助10
6秒前
7秒前
mmm完成签到,获得积分10
7秒前
8秒前
科研小生发布了新的文献求助10
8秒前
踏实的硬币完成签到,获得积分10
8秒前
英姑应助大胆的雪一采纳,获得10
9秒前
刘俸辰发布了新的文献求助10
10秒前
lws完成签到,获得积分10
11秒前
chenbring完成签到,获得积分10
11秒前
明理皮卡丘完成签到,获得积分10
11秒前
juwairen119发布了新的文献求助10
11秒前
Owen应助小鱼采纳,获得10
11秒前
LJR发布了新的文献求助10
12秒前
hinsir发布了新的文献求助30
12秒前
12秒前
13秒前
漂亮的千万完成签到,获得积分10
13秒前
bkagyin应助糊涂的小刺猬采纳,获得10
14秒前
14秒前
14秒前
Orange应助echo采纳,获得10
15秒前
XYYX发布了新的文献求助50
15秒前
16秒前
landolu完成签到,获得积分10
16秒前
我是老大应助刘俸辰采纳,获得10
17秒前
林狗发布了新的文献求助20
17秒前
健壮的月光完成签到,获得积分10
18秒前
18秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Reliability Monitoring Program 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5341256
求助须知:如何正确求助?哪些是违规求助? 4477527
关于积分的说明 13935866
捐赠科研通 4373584
什么是DOI,文献DOI怎么找? 2403064
邀请新用户注册赠送积分活动 1395964
关于科研通互助平台的介绍 1367903