Preoperative prediction of textbook outcome in intrahepatic cholangiocarcinoma by interpretable machine learning: A multicenter cohort study

医学 队列 队列研究 内科学 肝内胆管癌 外科 胃肠病学
作者
Tingfeng Huang,Cong Luo,Luo-Bin Guo,Hongzhi Liu,Jiangtao Li,Qizhu Lin,Ruirui Fan,Weiping Zhou,Jingdong Li,Kecan Lin,Shi-Chuan Tang,Yongyi Zeng
出处
期刊:World Journal of Gastroenterology [Baishideng Publishing Group]
卷期号:31 (11)
标识
DOI:10.3748/wjg.v31.i11.100911
摘要

BACKGROUND To investigate the preoperative factors influencing textbook outcomes (TO) in Intrahepatic cholangiocarcinoma (ICC) patients and evaluate the feasibility of an interpretable machine learning model for preoperative prediction of TO, we developed a machine learning model for preoperative prediction of TO and used the SHapley Additive exPlanations (SHAP) technique to illustrate the prediction process. AIM To analyze the factors influencing textbook outcomes before surgery and to establish interpretable machine learning models for preoperative prediction. METHODS A total of 376 patients diagnosed with ICC were retrospectively collected from four major medical institutions in China, covering the period from 2011 to 2017. Logistic regression analysis was conducted to identify preoperative variables associated with achieving TO. Based on these variables, an EXtreme Gradient Boosting (XGBoost) machine learning prediction model was constructed using the XGBoost package. The SHAP (package: Shapviz) algorithm was employed to visualize each variable's contribution to the model's predictions. Kaplan-Meier survival analysis was performed to compare the prognostic differences between the TO-achieving and non-TO-achieving groups. RESULTS Among 376 patients, 287 were included in the training group and 89 in the validation group. Logistic regression identified the following preoperative variables influencing TO: Child-Pugh classification, Eastern Cooperative Oncology Group (ECOG) score, hepatitis B, and tumor size. The XGBoost prediction model demonstrated high accuracy in internal validation (AUC = 0.8825) and external validation (AUC = 0.8346). Survival analysis revealed that the disease-free survival rates for patients achieving TO at 1, 2, and 3 years were 64.2%, 56.8%, and 43.4%, respectively. CONCLUSION Child-Pugh classification, ECOG score, hepatitis B, and tumor size are preoperative predictors of TO. In both the training group and the validation group, the machine learning model had certain effectiveness in predicting TO before surgery. The SHAP algorithm provided intuitive visualization of the machine learning prediction process, enhancing its interpretability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助yogurtli采纳,获得10
1秒前
可爱的咖啡完成签到,获得积分20
2秒前
3秒前
5秒前
5秒前
6秒前
10秒前
felix完成签到,获得积分10
13秒前
深情安青应助Yolo采纳,获得10
18秒前
18秒前
唠叨的秋天完成签到 ,获得积分10
19秒前
asdf发布了新的文献求助10
22秒前
善学以致用应助小巧弘文采纳,获得10
23秒前
H_C发布了新的文献求助10
23秒前
23秒前
Auston_zhong应助老北京采纳,获得10
23秒前
乐乐应助老北京采纳,获得10
23秒前
安安完成签到 ,获得积分10
23秒前
SciGPT应助老北京采纳,获得10
23秒前
23秒前
欣喜的香彤完成签到,获得积分10
24秒前
heli发布了新的文献求助10
25秒前
25秒前
阿玛特拉斯完成签到,获得积分10
28秒前
橙子发布了新的文献求助10
29秒前
张昊坤发布了新的文献求助10
30秒前
31秒前
32秒前
科研通AI5应助无辜砖头采纳,获得10
35秒前
今后应助学术垃圾采纳,获得10
35秒前
缓慢的豌豆完成签到 ,获得积分10
36秒前
asdf完成签到,获得积分20
37秒前
THJ123发布了新的文献求助10
37秒前
wWw发布了新的文献求助10
37秒前
38秒前
puziju完成签到,获得积分10
38秒前
MP完成签到,获得积分0
38秒前
11号楼203完成签到,获得积分10
39秒前
薛定谔的猫完成签到,获得积分10
39秒前
太空人发布了新的文献求助10
39秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778908
求助须知:如何正确求助?哪些是违规求助? 3324476
关于积分的说明 10218591
捐赠科研通 3039495
什么是DOI,文献DOI怎么找? 1668258
邀请新用户注册赠送积分活动 798634
科研通“疑难数据库(出版商)”最低求助积分说明 758440