已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A feature fused anti-noise intelligent fault diagnosis method of induction motor under variable conditions

感应电动机 特征(语言学) 变量(数学) 噪音(视频) 断层(地质) 模式识别(心理学) 计算机科学 人工智能 工程类 数学 电气工程 生物 电压 数学分析 哲学 古生物学 图像(数学) 语言学
作者
FAN Hongwei,Meng Jin,Gao JieWen,汪凯巍 Wang Kaiwei,Jie Li,Liu ShengLin,Xiangang Cao,Xuhui Zhang
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
标识
DOI:10.1177/14759217251326258
摘要

Under the conditions of variable speed and load for the motor, there are some problems such as complex operation data, difficult fault feature extraction and insufficient model generalization ability. A feature fusion method based on adaptive chirp mode decomposition (ACMD) and maximum absolute value rule (MAVR) and a fault diagnosis model based on improved convolutional neural network are proposed, which provides an efficient anti-noise fault diagnosis solution for the motor under variable conditions. First, the instantaneous frequencies (IFs) of vibration and current signals are extracted by ACMD, and then the MAVR is used to fuse the two IFs as new samples and input into the CNN model based on convolution kernel width and depth optimization. Based on a self-built platform, the experimental data of three-phase induction motor from static state to operation at 1800 rpm and from no load to heavy load under normal state, bearing and rotor mechanical faults, stator and rotor electrical faults are obtained, and the fault recognition accuracy of the proposed fault diagnosis method on the training set is more than 97%. In the model test, Gaussian white noise, colored noise, and random uniform distribution noise are added to the test set in a single and mixed way, respectively. The results show that the accuracy of the method is more than 71% when the noise intensity is greater than the signal strength, the accuracy is more than 84% when the noise intensity is equal to the signal strength, and the accuracy is more than 89% when the noise intensity is less than the signal strength, which proves that the proposed fault diagnosis method has strong anti-noise capability and robustness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
meizu发布了新的文献求助10
1秒前
bkagyin应助刘抒诺采纳,获得10
1秒前
2秒前
粥粥完成签到,获得积分10
3秒前
孟长歌发布了新的文献求助10
3秒前
Salieri完成签到,获得积分10
4秒前
orixero应助gy采纳,获得10
6秒前
6秒前
7秒前
简单的大哥完成签到,获得积分10
8秒前
韩楠完成签到 ,获得积分10
8秒前
Salieri发布了新的文献求助10
9秒前
10秒前
10秒前
多情的青曼完成签到,获得积分10
12秒前
研友_VZG7GZ应助英俊安蕾采纳,获得10
13秒前
李爱国应助英俊安蕾采纳,获得10
13秒前
13秒前
Guyong发布了新的文献求助10
13秒前
林好人发布了新的文献求助10
14秒前
Owen应助guojingjing采纳,获得10
14秒前
15秒前
18秒前
18秒前
18秒前
18秒前
18秒前
慕青应助科研通管家采纳,获得10
19秒前
SciGPT应助科研通管家采纳,获得10
19秒前
Jasper应助科研通管家采纳,获得10
19秒前
pluto应助科研通管家采纳,获得10
19秒前
19秒前
19秒前
19秒前
科研通AI6应助科研通管家采纳,获得10
19秒前
深情安青应助科研通管家采纳,获得10
19秒前
所所应助科研通管家采纳,获得10
19秒前
英俊的铭应助科研通管家采纳,获得10
19秒前
科研通AI6应助科研通管家采纳,获得10
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
the Oxford Guide to the Bantu Languages 3000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5763150
求助须知:如何正确求助?哪些是违规求助? 5538967
关于积分的说明 15404361
捐赠科研通 4899061
什么是DOI,文献DOI怎么找? 2635256
邀请新用户注册赠送积分活动 1583366
关于科研通互助平台的介绍 1538470