MoLE:Decoding by Mixture of Layer Experts Alleviates Hallucination in Large Vision-Language Models

解码方法 图层(电子) 计算机科学 人工智能 心理学 语言学 自然语言处理 化学 算法 哲学 有机化学
作者
Liang Tian,Youwei Du,Jing Huang,Ming Kong,Luyuan Chen,Yadong Li,Siye Chen,Qiang Zhu
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:39 (18): 18684-18692
标识
DOI:10.1609/aaai.v39i18.34056
摘要

Recent advancements in Large Vision-Language Models (LVLMs) highlight their ability to integrate and process multi-modal information. However, hallucinations—where generated content is inconsistent with input vision and instructions—remain a challenge. In this paper, we analyze LVLMs' layer-wise decoding and identify that hallucinations can arise during the reasoning and factual information injection process. Additionally, as the number of generated tokens increases, the forgetting of the original prompt may also lead to hallucinations.To address this, we propose a training-free decoding method called Mixture of Layer Experts (MoLE). MoLE leverages a heuristic gating mechanism to dynamically select multiple layers of LVLMs as expert layers: the Final Expert, the Second Opinion expert, and the Prompt Retention Expert. By the cooperation of each expert, MoLE enhances the robustness and faithfulness of the generation process. Our extensive experiments demonstrate that MoLE significantly reduces hallucinations, outperforming the current state-of-the-art decoding techniques across three mainstream LVLMs and two established hallucination benchmarks. Moreover, our method reveals the potential of LVLMs to independently produce more reliable and accurate outputs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
juice完成签到 ,获得积分10
1秒前
汉堡包应助今天想吃披萨采纳,获得10
1秒前
2秒前
安茉发布了新的文献求助10
5秒前
6秒前
千葉完成签到,获得积分10
6秒前
李爱国应助cheng采纳,获得10
9秒前
千葉发布了新的文献求助10
9秒前
知识付费完成签到,获得积分10
10秒前
高高菠萝完成签到 ,获得积分10
10秒前
上官若男应助俭朴的一曲采纳,获得10
11秒前
11秒前
小小完成签到 ,获得积分10
14秒前
晨雾锁阳发布了新的文献求助10
15秒前
cc发布了新的文献求助10
16秒前
lingzhi完成签到 ,获得积分10
16秒前
Genius完成签到,获得积分10
18秒前
科研通AI5应助111采纳,获得10
21秒前
21秒前
22秒前
lio完成签到,获得积分10
23秒前
Chen完成签到,获得积分10
23秒前
沉默夏真发布了新的文献求助30
24秒前
容荣发布了新的文献求助10
25秒前
power完成签到,获得积分10
25秒前
28秒前
edsenone发布了新的文献求助10
29秒前
sunshine应助容荣采纳,获得10
30秒前
31秒前
研友_VZG7GZ应助李kyt采纳,获得10
31秒前
32秒前
老虎完成签到,获得积分10
32秒前
32秒前
昏睡的芾完成签到,获得积分20
33秒前
勤奋的如松完成签到,获得积分10
33秒前
安茉完成签到,获得积分10
33秒前
温暖的涵易完成签到,获得积分0
33秒前
南卡发布了新的文献求助10
34秒前
34秒前
邓大发啦啦啦完成签到,获得积分10
36秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799006
求助须知:如何正确求助?哪些是违规求助? 3344720
关于积分的说明 10321316
捐赠科研通 3061197
什么是DOI,文献DOI怎么找? 1680067
邀请新用户注册赠送积分活动 806880
科研通“疑难数据库(出版商)”最低求助积分说明 763435