FeadSeq: A Personalized Federated Anomaly Detection Framework for Discrete Event Sequences

异常检测 计算机科学 事件(粒子物理) 异常(物理) 数据挖掘 事件数据 物理 凝聚态物理 量子力学 分析
作者
Wei Guan,Jian Cao,Haiyan Zhao,Yang Gu,Shiyou Qian
出处
期刊:ACM Transactions on Knowledge Discovery From Data [Association for Computing Machinery]
标识
DOI:10.1145/3742896
摘要

Event sequence anomaly detection has garnered considerable attention in research, encompassing applications such as identifying anomalies in system logs, anomalous transaction users, etc. Yet, prevailing anomaly detection methods often rely solely on local data for training, potentially leading to imperfect detection performance. In this article, we introduce a personalized Fe derated a nomaly d etection framework for discrete event Seq uences, named FeadSeq. Specifically, we propose a separate architecture for sequence reconstruction networks (SEPRE) which partitions the network into two parts: a shared part and a standalone part, better suited for federated learning schemes. In tandem, we propose a novel partial shared federated learning scheme that employs a mask strategy to alleviate communication overhead and produce personalized local models to address the statistical heterogeneity of data among clients. This scheme dictates that a subset of weights is communicated between clients and servers for collaborative training, while the remaining weights are trained exclusively locally. To evaluate the effectiveness of FeadSeq, we conduct extensive experiments on both system logs and business process event logs. The results affirm the superiority of FeadSeq over existing personalized federated learning algorithms, showcasing not only improved performance but also reduced communication overhead.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
HEL完成签到,获得积分10
刚刚
我是老大应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
fff完成签到,获得积分10
刚刚
benben055应助半斤采纳,获得10
1秒前
monkey完成签到,获得积分10
1秒前
笑点低战斗机完成签到,获得积分10
1秒前
haibing发布了新的文献求助10
1秒前
烟雨夕阳完成签到,获得积分10
1秒前
HHF完成签到,获得积分10
1秒前
2秒前
隐形曼青应助AAA采纳,获得10
2秒前
派派发布了新的文献求助10
3秒前
肥仔完成签到 ,获得积分10
3秒前
活力的妙松完成签到,获得积分10
3秒前
潇洒的蓝应助甜甜甜采纳,获得10
3秒前
标致的泥猴桃完成签到,获得积分10
4秒前
Lau完成签到,获得积分10
4秒前
4秒前
SunK1876完成签到,获得积分10
4秒前
ying完成签到,获得积分10
4秒前
神奇的海螺完成签到,获得积分10
5秒前
张凡完成签到 ,获得积分10
6秒前
min完成签到,获得积分20
7秒前
哈哈小米完成签到,获得积分10
8秒前
阿宝完成签到,获得积分10
9秒前
yoyo完成签到,获得积分10
10秒前
嘿哈完成签到,获得积分10
11秒前
安静无招完成签到 ,获得积分10
11秒前
科目三应助可爱天川采纳,获得10
11秒前
leezh完成签到 ,获得积分10
12秒前
12秒前
haibing完成签到,获得积分10
13秒前
13秒前
超级纸飞机完成签到 ,获得积分10
13秒前
wangwang完成签到,获得积分10
13秒前
13秒前
陈俊彰完成签到,获得积分10
13秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
Materials for Green Hydrogen Production 2026-2036: Technologies, Players, Forecasts 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4061661
求助须知:如何正确求助?哪些是违规求助? 3600275
关于积分的说明 11433299
捐赠科研通 3323815
什么是DOI,文献DOI怎么找? 1827483
邀请新用户注册赠送积分活动 897954
科研通“疑难数据库(出版商)”最低求助积分说明 818774