Current and future applications of artificial intelligence in lung cancer and mesothelioma

放射基因组学 医学 背景(考古学) 间皮瘤 人工智能 机器学习 医学物理学 计算机科学 病理 无线电技术 放射科 古生物学 生物
作者
Joshua Roche,Farzaneh Seyedshahi,Kai Rakovic,Akari Win Thu,John Le Quesne,Kevin G. Blyth
出处
期刊:Thorax [BMJ]
卷期号:: thorax-222054
标识
DOI:10.1136/thorax-2024-222054
摘要

Background Considerable challenges exist in managing lung cancer and mesothelioma, including diagnostic complexity, treatment stratification, early detection and imaging quantification. Variable incidence in mesothelioma also makes equitable provision of high-quality care difficult. In this context, artificial intelligence (AI) offers a range of assistive/automated functions that can potentially enhance clinical decision-making, while reducing inequality and pathway delay. Aims In this state-of-the-art narrative review, we synthesise evidence on this topic, focusing particularly on tools that ingest routine pathology and radiology images. We summarise the strengths and weaknesses of AI applied to common multidisciplinary team (MDT) functions, including histological diagnosis, therapeutic response prediction, radiological detection and quantification, and survival estimation. We also review emerging methods capable of generating novel biological insights and current barriers to implementation, including access to high-quality training data and suitable regulatory and technical infrastructure. Narrative Neural networks trained on pathology images have proven utility in histological classification, prognostication, response prediction and survival. Self-supervised models can also generate new insights into biological features responsible for adverse outcomes. Radiology applications include lung nodule tools, which offer critical pathway support for imminent lung cancer screening and urgent referrals. Tumour segmentation AI offers particular advantages in mesothelioma, where response assessment and volumetric staging are difficult using human readers due to tumour size and morphological complexity. AI is also critical for radiogenomics, permitting effective integration of molecular and radiomic features for discovery of non-invasive markers for molecular subtyping and enhanced stratification. Conclusions AI solutions offer considerable potential benefits across the MDT, particularly in repetitive or time-consuming tasks based on pathology and radiology images. Effective leveraging of this technology is critical for lung cancer screening and efficient delivery of increasingly complex diagnostic and predictive MDT functions. Future AI research should involve transparent and interpretable outputs that assist in explaining the basis of AI-supported decision making.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
周梅芳完成签到,获得积分10
刚刚
刚刚
1秒前
不着四六的岁月完成签到,获得积分10
1秒前
lmh011115完成签到,获得积分10
2秒前
寐悦行关注了科研通微信公众号
4秒前
汉堡包应助Ldq采纳,获得10
5秒前
我是老大应助大气的山彤采纳,获得10
7秒前
Shaineli发布了新的文献求助10
8秒前
菜刀发布了新的文献求助10
9秒前
南极磷叶石完成签到,获得积分10
17秒前
19秒前
蓝色天空发布了新的文献求助10
19秒前
yyyyyyy发布了新的文献求助10
20秒前
Mercy发布了新的文献求助20
21秒前
齐半青完成签到,获得积分10
23秒前
23秒前
23秒前
24秒前
25秒前
阿冷完成签到,获得积分10
26秒前
梦玲完成签到 ,获得积分20
26秒前
26秒前
浅色墨水完成签到,获得积分10
26秒前
腾腾同学发布了新的文献求助10
28秒前
28秒前
所所应助Mercy采纳,获得10
29秒前
疯狂的凡发布了新的文献求助10
29秒前
30秒前
SciGPT应助蓝色天空采纳,获得10
30秒前
大气的山彤完成签到,获得积分10
30秒前
微笑发布了新的文献求助10
32秒前
Shaineli完成签到,获得积分10
32秒前
xjn完成签到,获得积分10
34秒前
34秒前
Mercy完成签到,获得积分10
37秒前
Ldq发布了新的文献求助10
39秒前
pluto应助凫萤榭竹采纳,获得10
40秒前
田様应助科研通管家采纳,获得10
40秒前
深情安青应助科研通管家采纳,获得10
40秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
苏州地下水中新污染物及其转化产物的非靶向筛查 500
Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research 460
Ricci Solitons in Dimensions 4 and Higher 450
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4775996
求助须知:如何正确求助?哪些是违规求助? 4108055
关于积分的说明 12707627
捐赠科研通 3829159
什么是DOI,文献DOI怎么找? 2112484
邀请新用户注册赠送积分活动 1136325
关于科研通互助平台的介绍 1020020