Evaluation of Shelf Life Prediction for Broccoli Based on Multispectral Imaging and Multi-Feature Data Fusion

多光谱图像 保质期 特征(语言学) 传感器融合 融合 遥感 人工智能 计算机科学 环境科学 模式识别(心理学) 地理 化学 食品科学 语言学 哲学
作者
Xiangqin Cui,Xiaoxue Sun,Shuxin Xuan,Jinyu Liu,Dongfang Zhang,Jun Zhang,Xiaofei Fan,Xuesong Suo
出处
期刊:Agronomy [MDPI AG]
卷期号:15 (4): 788-788
标识
DOI:10.3390/agronomy15040788
摘要

Broccoli is a highly nutritious vegetable that is favored worldwide. Assessing and predicting the shelf life of broccoli holds considerable importance for effective resource optimization and management. The physicochemical parameters and spectral characteristics of broccoli are important indicators partially reflecting its shelf life. However, few studies have used spectral image information to predict and evaluate the shelf life of broccoli. In this study, multispectral imaging combined with multi-feature data fusion was used to predict and evaluate the shelf life of broccoli. Spectral data and textural features were extracted from multispectral images of broccoli and fused with the physicochemical parameters for analysis. Savitzky–Golay (SG) convolution smoothing and standard normal variate (SNV) and normalization (Norm) preprocessing methods were employed to preprocess the original spectral data and textural features, while a successive projection algorithm (SPA) was used to extract relevant feature bands. The physicochemical parameters for broccoli shelf life were predicted using three methods: support vector regression (SVR), random forest classification (RF), and 2D convolutional neural network (2D-CNN) models. Broccoli shelf life prediction models were evaluated using three classification methods: RF, 1D-CNN, and 2D-CNN. The results demonstrate that, among the models used for predicting and evaluating the shelf life of broccoli, the SPA+SG+RF classification model employing fused data Type C achieves the highest accuracy. Specifically, this method achieves accuracies of 88.98% and 88.64% for the training and validation sets, respectively. Multi-feature data fusion of spectral image information and physical and chemical parameters were combined with different machine learning methods to predict and evaluate the shelf life of broccoli.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助ZMTW采纳,获得10
刚刚
H_H发布了新的文献求助10
刚刚
小6s发布了新的文献求助10
1秒前
缪甲烷发布了新的文献求助10
1秒前
1秒前
1秒前
安静的寒风完成签到,获得积分10
3秒前
6秒前
8秒前
9秒前
fanmo完成签到 ,获得积分0
11秒前
所所应助凉拌土豆芽采纳,获得30
11秒前
余允怜完成签到,获得积分10
11秒前
12秒前
凡城发布了新的文献求助10
12秒前
天天快乐应助7890733采纳,获得30
12秒前
酷波er应助7890733采纳,获得30
12秒前
上官若男应助7890733采纳,获得10
12秒前
烟花应助7890733采纳,获得10
12秒前
慕青应助7890733采纳,获得10
12秒前
12秒前
14秒前
外向诗双发布了新的文献求助10
15秒前
陈不沉发布了新的文献求助10
16秒前
内向忆南完成签到,获得积分10
16秒前
莹莹完成签到 ,获得积分10
17秒前
李梁发布了新的文献求助10
17秒前
追风少年发布了新的文献求助10
18秒前
18秒前
听蝉发布了新的文献求助10
18秒前
凡城完成签到,获得积分10
21秒前
Yang完成签到,获得积分10
23秒前
赘婿应助沉默的可乐采纳,获得10
24秒前
24秒前
kingwill发布了新的文献求助20
24秒前
浮游应助十八鱼采纳,获得10
24秒前
志不在科研完成签到,获得积分10
26秒前
Dd18753801528完成签到,获得积分10
28秒前
29秒前
天天快乐应助轻松棉花糖采纳,获得30
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5300590
求助须知:如何正确求助?哪些是违规求助? 4448410
关于积分的说明 13845816
捐赠科研通 4334134
什么是DOI,文献DOI怎么找? 2379350
邀请新用户注册赠送积分活动 1374494
关于科研通互助平台的介绍 1340160