Transitioning from Lab-Based to AI-Assisted Balanced Mix Design: Comprehensive Overview of Research, Development, and Future Perspectives

大数据 分析 领域(数学) 数据科学 质量(理念) 概率逻辑 质量保证 人工智能 计算机科学 管理科学 机器学习 工程类 数据挖掘 运营管理 哲学 外部质量评估 数学 认识论 纯数学
作者
Jian Liu,Fangyu Liu,Zhen Wang,Shuhan Yang,Ebenezer O. Fanijo,Linbing Wang
出处
期刊:Transportation Research Record [SAGE Publishing]
卷期号:2679 (7): 29-63
标识
DOI:10.1177/03611981251322465
摘要

Many states have made enormous research efforts to explore the feasibility of integrating balanced mix design (BMD) within their asphalt pavement programs. However, these research conclusions drawn from limited laboratory and field data may not be applicable to typical mixtures across other projects and states. Big data analytics, along with artificial intelligence (AI), is a widely accepted method to address the issue. This paper first did a literature review on the main research topics related to BMD and identified their deficiencies from a data adequacy perspective. Next, the research efforts in AI’s application on asphalt mixture performance and pavement condition prediction, and mix design optimization were reviewed. The successful uses of AI in asphalt mixture show great potential in overcoming shortcomings of lab-based BMD. Consequently, this study proposes an integrated AI-based big data analytics (AI-assisted) BMD framework and outlines future work to achieve this framework. The proposed future work includes establishing a comprehensive database, determining performance thresholds using big data analytics, developing an optimization-based BMD procedure with AI-based predictive pavement performance models, and determining quality control (QC)/quality assurance (QA) specifications using machine learning associated with probabilistic models. The framework not only determines mixture composition with balanced performance but also achieves time and economic savings and environmental effects during laboratory BMD and pavement construction.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
张振完成签到,获得积分10
刚刚
高兴翅膀发布了新的文献求助10
1秒前
qrt发布了新的文献求助10
1秒前
1秒前
Neil完成签到,获得积分10
1秒前
1秒前
2秒前
科研通AI6应助aaaasss采纳,获得10
3秒前
4秒前
无花果应助啊呀麦克采纳,获得10
4秒前
1q2w3e应助dan1029采纳,获得10
4秒前
4秒前
Yang2完成签到,获得积分10
4秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
kingsea发布了新的文献求助10
6秒前
酚醛树脂发布了新的文献求助10
7秒前
snm发布了新的文献求助10
7秒前
1028181661发布了新的文献求助10
9秒前
Jasper应助萝卜不困采纳,获得10
9秒前
10秒前
11秒前
11秒前
浮游应助Cici采纳,获得10
11秒前
生动梦松应助123采纳,获得30
12秒前
12秒前
愉快天亦完成签到,获得积分10
12秒前
大模型应助Doner采纳,获得10
12秒前
脑洞疼应助1028181661采纳,获得10
13秒前
安静的荧发布了新的文献求助10
14秒前
辛勤愚志发布了新的文献求助10
14秒前
希望天下0贩的0应助熏弦采纳,获得10
15秒前
千幻发布了新的文献求助10
16秒前
小姚在忙完成签到,获得积分10
16秒前
筱晓完成签到,获得积分10
17秒前
17秒前
L1Young完成签到,获得积分10
17秒前
xiaoze发布了新的文献求助10
17秒前
科研通AI6应助333采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nuclear Fuel Behaviour under RIA Conditions 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Optimization and Learning via Stochastic Gradient Search 300
Higher taxa of Basidiomycetes 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4679792
求助须知:如何正确求助?哪些是违规求助? 4056132
关于积分的说明 12542028
捐赠科研通 3750643
什么是DOI,文献DOI怎么找? 2071501
邀请新用户注册赠送积分活动 1100578
科研通“疑难数据库(出版商)”最低求助积分说明 980055