A novel seasonal lag grey model for forecasting quarterly electricity consumption in China

滞后 中国 消费(社会学) 时滞 分布滞后 计量经济学 环境科学 功率消耗 经济 气象学 地理 计算机科学 功率(物理) 工程类 电气工程 物理 社会学 量子力学 考古 社会科学 计算机网络
作者
Ye Li,T. Jin,Xue Bai,Chengyun Wang,Bin Liu
出处
期刊:Grey systems [Emerald (MCB UP)]
卷期号:15 (3): 620-636 被引量:2
标识
DOI:10.1108/gs-10-2024-0120
摘要

Purpose Due to macroeconomic and seasonal impacts, electricity usage is highly uncertain, showing complex random, nonlinear and periodic patterns. To address this, a new seasonal lag grey forecasting model, TVGM(1,1,sin), is proposed to predict small sample series with long-term trends, quarterly changes and random nonlinearity. Design/methodology/approach First, trigonometric functions and time-varying parameters were added to the nonlinear grey model to create the TVGM(1,1,sin) model. Next, optimal nonlinear parameter values and time delay were found using the debugging method and genetic algorithm. Lastly, the model was used to forecast China’s quarterly electricity usage, showing it can effectively capture nonlinear and quarterly trends. Further tests confirm the model’s high accuracy, with a MAPE of just 3.98%. Findings A new seasonal grey TVGM(1,1,sin) model was built by adding trigonometric functions and time trends to the traditional nonlinear grey model. It fits quarterly cycles well, showing high adaptability for predicting complex, small-sample time series with quarterly periodicity. In case studies, it outperformed other models, proving its strong generalization ability. Practical implications This paper offers a scientific prediction model for China’s electricity use, which has seasonal cycles and complex nonlinearity. The prediction results can aid power firms and governments in efficient decision-making. Originality/value The main contribution of this article is to propose a new seasonal grey prediction model that accurately captures nonlinear dynamics, fitting the data sequence better. In addition, due to the presence of nonlinear parameters, the model is endowed with strong flexibility and intelligent algorithms are used to dynamically optimize the nonlinear parameters, further improving the prediction accuracy of the model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qsxchenq完成签到 ,获得积分10
刚刚
科研的狗发布了新的文献求助10
2秒前
2秒前
锣大炮发布了新的文献求助10
2秒前
乐乐应助bastien采纳,获得30
3秒前
酷波er应助积极亦竹采纳,获得30
3秒前
小二郎应助轩哥采纳,获得10
4秒前
香蕉觅云应助LFYL采纳,获得10
4秒前
4秒前
4秒前
111应助逝水无痕采纳,获得10
5秒前
5秒前
林木木发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
6秒前
顺心凡灵完成签到,获得积分10
8秒前
酷波er应助沈二采纳,获得10
8秒前
8秒前
yurenxiaojie发布了新的文献求助10
8秒前
上官若男应助佟鹭其采纳,获得10
9秒前
123发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
9秒前
CAOHB发布了新的文献求助10
10秒前
科研通AI6.1应助ljy1111采纳,获得10
11秒前
12秒前
是真的发布了新的文献求助10
12秒前
希望完成签到 ,获得积分10
13秒前
ilmadf发布了新的文献求助10
14秒前
科研的狗完成签到,获得积分10
14秒前
14秒前
15秒前
汉堡包应助jhchen采纳,获得10
15秒前
嗷嗷待哺狼完成签到,获得积分10
15秒前
16秒前
轩哥发布了新的文献求助10
16秒前
17秒前
17秒前
17秒前
kian完成签到,获得积分10
18秒前
彭于晏应助13679127159采纳,获得10
18秒前
Linda完成签到,获得积分0
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5777273
求助须知:如何正确求助?哪些是违规求助? 5632929
关于积分的说明 15445517
捐赠科研通 4909292
什么是DOI,文献DOI怎么找? 2641678
邀请新用户注册赠送积分活动 1589644
关于科研通互助平台的介绍 1544118