已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An Integrated Model Combined Conventional Radiomics and Deep Learning Features to Predict Early Recurrence of Hepatocellular Carcinoma Eligible for Curative Ablation: A Multicenter Cohort Study

医学 接收机工作特性 肝细胞癌 放射科 队列 无线电技术 曲线下面积 校准 Lasso(编程语言) 恶性肿瘤 人工智能 内科学 核医学 统计 数学 万维网 计算机科学
作者
Yonghai Li,Guixiang Qian,Yu Zhu,Xuedi Lei,Lei Tang,Xiangyi Bu,Mingtong Wei,W. Jia
出处
期刊:Journal of Computer Assisted Tomography [Lippincott Williams & Wilkins]
标识
DOI:10.1097/rct.0000000000001764
摘要

Objective: Hepatocellular carcinoma (HCC) is the most common primary liver malignancy. Ablation therapy is one of the first-line treatments for early HCC. Accurately predicting early recurrence (ER) is crucial for making precise treatment plans and improving prognosis. This study aimed to develop and validate a model (DLRR) that incorporates deep learning radiomics and traditional radiomics features to predict ER following curative ablation for HCC. Methods: We retrospectively analysed the data of 288 eligible patients from 3 hospitals—1 primary cohort (center 1, n=222) and 2 external test cohorts (center 2, n=32 and center 3, n=34)—from April 2008 to March 2022. 3D ResNet-18 and PyRadiomics were applied to extract features from contrast-enhanced computed tomography (CECT) images. The 3-step (ICC-LASSO-RFE) method was used for feature selection, and 6 machine learning methods were used to construct models. Performance was compared through the area under the receiver operating characteristic curve (AUC), net reclassification improvement (NRI) and integrated discrimination improvement (IDI) indices. Calibration and clinical applicability were assessed through calibration curves and decision curve analysis (DCA), respectively. Kaplan-Meier (K-M) curves were generated to stratify patients based on progression-free survival (PFS) and overall survival (OS). Results: The DLRR model had the best performance, with AUCs of 0.981, 0.910, and 0.851 in the training, internal validation, and external validation sets, respectively. In addition, the calibration curve and DCA curve revealed that the DLRR model had good calibration ability and clinical applicability. The K-M curve indicated that the DLRR model provided risk stratification for progression-free survival (PFS) and overall survival (OS) in HCC patients. Conclusions: The DLRR model noninvasively and efficiently predicts ER after curative ablation in HCC patients, which helps to categorize the risk in patients to formulate precise diagnosis and treatment plans and management strategies for patients and to improve the prognosis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
轻松的万天完成签到 ,获得积分10
2秒前
jiu关注了科研通微信公众号
2秒前
2秒前
在水一方应助jiejie采纳,获得10
3秒前
4秒前
南瓜猪猪头完成签到,获得积分10
5秒前
fouli发布了新的文献求助10
5秒前
llll完成签到,获得积分10
5秒前
7秒前
8秒前
Lucas应助须臾采纳,获得10
9秒前
蜜桃奇迹发布了新的文献求助10
9秒前
11秒前
丫丫完成签到 ,获得积分10
13秒前
15秒前
二两酒肉完成签到,获得积分10
16秒前
jiejie发布了新的文献求助10
17秒前
一作自由发布了新的文献求助10
20秒前
英姑应助快乐的只狼采纳,获得10
20秒前
科研通AI5应助蜜桃奇迹采纳,获得30
20秒前
久9完成签到 ,获得积分10
21秒前
22秒前
雨林发布了新的文献求助30
23秒前
24秒前
24秒前
二两酒肉发布了新的文献求助10
25秒前
26秒前
drizzling完成签到,获得积分10
28秒前
须臾发布了新的文献求助10
29秒前
xyf发布了新的文献求助10
29秒前
30秒前
gaw2008完成签到,获得积分10
33秒前
33秒前
34秒前
阿眠Aaaaa发布了新的文献求助10
35秒前
思有完成签到 ,获得积分10
35秒前
38秒前
one发布了新的文献求助10
38秒前
takeitboy发布了新的文献求助10
43秒前
哈哈完成签到,获得积分10
43秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
非光滑分析与控制理论 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
NK Cell Receptors: Advances in Cell Biology and Immunology by Colton Williams (Editor) 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3827093
求助须知:如何正确求助?哪些是违规求助? 3369359
关于积分的说明 10455705
捐赠科研通 3089006
什么是DOI,文献DOI怎么找? 1699560
邀请新用户注册赠送积分活动 817411
科研通“疑难数据库(出版商)”最低求助积分说明 770217