Construction and Verification of a Frailty Risk Prediction Model for Elderly Patients with Coronary Heart Disease Based on a Machine Learning Algorithm

阿达布思 医学 机器学习 逻辑回归 接收机工作特性 人工智能 Boosting(机器学习) Lasso(编程语言) 弗雷明翰风险评分 特征选择 随机森林 梯度升压 内科学 算法 疾病 支持向量机 计算机科学 万维网
作者
Jiaoyu Cao,Lixiang Zhang,X. R. Zhou
出处
期刊:Reviews in Cardiovascular Medicine [IMR Press]
卷期号:26 (2)
标识
DOI:10.31083/rcm26225
摘要

Background: This study aimed to develop a machine learning-based predictive model for assessing frailty risk among elderly patients with coronary heart disease (CHD). Methods: From November 2020 to May 2023, a cohort of 1170 elderly patients diagnosed with CHD were enrolled from the Department of Cardiology of a tier-3 hospital in Anhui Province, China. Participants were randomly divided into a development group and a validation group, each containing 585 patients in a 1:1 ratio. Least absolute shrinkage and selection operator (LASSO) regression was employed in the development group to identify key variables influencing frailty among patients with CHD. These variables informed the creation of a machine learning prediction model, with the most accurate model selected. Predictive accuracy was subsequently evaluated in the validation group through receiver operating characteristic (ROC) curve analysis. Results: LASSO regression identified the activities of daily living (ADL) score, hemoglobin, low-density lipoprotein cholesterol (LDL-C), total cholesterol (TC), depression, cardiac function classification, cerebrovascular disease, diabetes, solitary living, and age as significant predictors of frailty among elderly patients with CHD in the development group. These variables were incorporated into a logistic regression model and four machine learning models: extreme gradient boosting (XGBoost), random forest (RF), light gradient boosting machine (LightGBM), and adaptive boosting (AdaBoost). AdaBoost demonstrated the highest accuracy in the development group, achieving an area under the ROC curve (AUC) of 0.803 in the validation group, indicating strong predictive capability. Conclusions: By leveraging key frailty determinants in elderly patients with CHD, the AdaBoost machine learning model developed in this study has shown robust predictive performance through validated indicators and offers a reliable tool for assessing frailty risk in this patient population.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123完成签到,获得积分20
1秒前
星海种花发布了新的文献求助10
3秒前
Fay发布了新的文献求助40
4秒前
凡平发布了新的文献求助10
6秒前
无花果应助科研通管家采纳,获得10
7秒前
ding应助科研通管家采纳,获得10
7秒前
Owen应助阳光萌萌采纳,获得10
8秒前
CipherSage应助科研通管家采纳,获得10
8秒前
李健应助科研通管家采纳,获得10
8秒前
脑洞疼应助科研通管家采纳,获得10
8秒前
英俊的铭应助科研通管家采纳,获得30
8秒前
8R60d8应助科研通管家采纳,获得10
8秒前
FashionBoy应助科研通管家采纳,获得10
8秒前
孙燕应助科研通管家采纳,获得10
8秒前
8R60d8应助科研通管家采纳,获得10
8秒前
someone完成签到,获得积分10
8秒前
8R60d8应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
8R60d8应助科研通管家采纳,获得10
8秒前
小二郎应助科研通管家采纳,获得10
8秒前
tll应助科研通管家采纳,获得10
9秒前
搜集达人应助科研通管家采纳,获得10
9秒前
小马甲应助大青山采纳,获得10
9秒前
11秒前
12秒前
项初蝶完成签到 ,获得积分10
12秒前
彭于晏应助小徐医生采纳,获得10
14秒前
共享精神应助虚幻的灵波采纳,获得10
15秒前
wangxiaoqing完成签到,获得积分10
15秒前
星海种花完成签到,获得积分10
15秒前
钱念波发布了新的文献求助10
15秒前
16秒前
wangwangwang完成签到,获得积分10
16秒前
17秒前
petli完成签到,获得积分10
18秒前
18秒前
aishiying发布了新的文献求助30
19秒前
20秒前
鱼贝贝发布了新的文献求助10
22秒前
lz完成签到,获得积分10
22秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Plutonium Handbook 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 640
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 540
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
Chinese Buddhist Monasteries: Their Plan and Its Function As a Setting for Buddhist Monastic Life 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4117211
求助须知:如何正确求助?哪些是违规求助? 3655712
关于积分的说明 11575771
捐赠科研通 3358706
什么是DOI,文献DOI怎么找? 1845171
邀请新用户注册赠送积分活动 910646
科研通“疑难数据库(出版商)”最低求助积分说明 827016