Generative adversarial networks (GANs) for image augmentation in agriculture: A systematic review

计算机科学 人工智能 深度学习 机器学习 图像处理 精准农业 生成对抗网络 一套 数据科学 农业 图像(数学) 生态学 生物 历史 考古
作者
Yuzhen Lu,Dong Chen,Ebenezer O. Olaniyi,Yanbo Huang
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:200: 107208-107208 被引量:151
标识
DOI:10.1016/j.compag.2022.107208
摘要

In agricultural image analysis, optimal model performance is keenly pursued for better fulfilling visual recognition tasks (e.g., image classification, segmentation, object detection and localization), in the presence of challenges with biological variability and unstructured environments. Large-scale, balanced and ground-truthed image datasets are tremendously beneficial but most often difficult to obtain to fuel the development of highly performant models. As artificial intelligence through deep learning is impacting analysis and modeling of agricultural images, image augmentation plays a crucial role in boosting model performance while reducing manual efforts for image collection and labelling, by algorithmically creating and expanding datasets. Beyond traditional data augmentation techniques, generative adversarial network (GAN) invented in 2014 in the computer vision community, provides a suite of novel approaches that can learn good data representations and generate highly realistic samples. Since 2017, there has been a growth of research into GANs for image augmentation or synthesis in agriculture for improved model performance. This paper presents an overview of the evolution of GAN architectures followed by a first systematic review of various applications in agriculture and food systems (https://github.com/Derekabc/GANs-Agriculture), involving a diversity of visual recognition tasks for plant health conditions, weeds, fruits (preharvest), aquaculture, animal farming, plant phenotyping as well as postharvest detection of fruit defects. Challenges and opportunities of GANs are discussed for future research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
gyyyy完成签到,获得积分10
刚刚
猫南北发布了新的文献求助10
刚刚
刚刚
danna应助糊涂的访烟采纳,获得10
1秒前
1秒前
Gzdaigzn完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
2秒前
开心蛋挞完成签到,获得积分10
2秒前
3秒前
孟123发布了新的文献求助10
3秒前
3秒前
4秒前
qing完成签到,获得积分10
4秒前
zhh发布了新的文献求助10
6秒前
6秒前
6秒前
乐乐应助超级盼海采纳,获得10
6秒前
打打应助布丁采纳,获得10
7秒前
天天快乐应助felix采纳,获得10
7秒前
开心蛋挞发布了新的文献求助10
7秒前
ahyiziping发布了新的文献求助10
7秒前
孔孔发布了新的文献求助30
8秒前
wyg1994发布了新的文献求助10
8秒前
banyingmm完成签到,获得积分10
8秒前
8秒前
隐形曼青应助小圆采纳,获得10
9秒前
lc完成签到,获得积分20
9秒前
文艺书雪发布了新的文献求助10
9秒前
壮观果汁完成签到 ,获得积分10
9秒前
nhsyb嘉发布了新的文献求助10
9秒前
poorzz发布了新的文献求助10
10秒前
11秒前
大意的剑心完成签到,获得积分10
12秒前
JACk完成签到 ,获得积分10
12秒前
13秒前
孟123完成签到,获得积分10
14秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3838043
求助须知:如何正确求助?哪些是违规求助? 3380287
关于积分的说明 10513442
捐赠科研通 3099903
什么是DOI,文献DOI怎么找? 1707264
邀请新用户注册赠送积分活动 821558
科研通“疑难数据库(出版商)”最低求助积分说明 772750