Plant-Derived Exosome-Like Nanovesicle-Loaded Hydrogels Promote Wound Healing

作者
Jing Wang,Bing Li
出处
期刊:International Dental Journal [Elsevier]
卷期号:75: 104129-104129
标识
DOI:10.1016/j.identj.2025.104129
摘要

Aim or purpose: Healing of infected wounds is an intricate and dynamic physiological process that takes several days to complete. Momordica charantia-derived extracellular vesicles (MCEVs) have anti-inflammatory and antioxidant properties, and GelMA/HAMA dual-network injectable hydrogel loaded with MCEVs(MCEVs-GelMA/HAMA) may be a new strategy for accelerated wound healing. Materials and methods: MCEVs were extracted by ultracentrifugation, and analyzed and identified by transmission electron microscopy (TEM), western blot and nanoparticle tracking analysis (NTA). The full-layer skin wound model of SD rat back was constructed, and MCEVs-GelMA/HAMA was injected into the subcutaneous tissue around the wound and observed and recorded continuously for 14 days. The wound healing rate was calculated by ImageJ image analysis software. On the 14th day after surgery, mouse skin pathological samples were collected for HE staining and immunohistochemical staining, and the number of neovascularization and the expression of vascular marker CD31 around the wound were analyzed. Results: MCEVs were typical double-concave discs with diameters ranging from 50nm to 150nm. The wound healing rate of rats treated by MCEVs-GelMA/HAMA group was significantly better than that of control group. Gross skin samples and HE staining showed that the number of dermal neovasculars increased in the MCEVs-GelMA/HAMA treatment group. Immunohistochemical staining showed that the expression of vascular marker CD31 increased in the MCEVs-GelMA/HAMA treatment group. Conclusions: MCEVs-GelMA/HAMA can promote neovascularization and accelerate skin wound healing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
youjiwuji发布了新的文献求助10
刚刚
香蕉觅云应助霸气的幻梦采纳,获得10
刚刚
jiao发布了新的文献求助10
1秒前
AILOLIHH发布了新的文献求助10
1秒前
1秒前
杨乐多发布了新的文献求助20
1秒前
豚豚完成签到,获得积分10
1秒前
2秒前
lky发布了新的文献求助10
2秒前
2秒前
2秒前
春宇发布了新的文献求助10
2秒前
3秒前
3秒前
4秒前
4秒前
爆米花应助mort采纳,获得10
4秒前
灿烂sunfly完成签到,获得积分10
4秒前
4秒前
香菜完成签到,获得积分10
5秒前
5秒前
啦啦啦完成签到,获得积分10
5秒前
6秒前
123456应助zouzou采纳,获得10
7秒前
嘿嘿完成签到,获得积分0
7秒前
量子星尘发布了新的文献求助10
7秒前
zzazz发布了新的文献求助10
8秒前
宇月幸成发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
琼琚发布了新的文献求助10
8秒前
9秒前
赘婿应助AILOLIHH采纳,获得10
9秒前
笨笨啾发布了新的文献求助10
10秒前
Luna发布了新的文献求助10
10秒前
10秒前
wdl完成签到 ,获得积分10
10秒前
yuanman发布了新的文献求助10
10秒前
搜集达人应助youjiwuji采纳,获得10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5722036
求助须知:如何正确求助?哪些是违规求助? 5268334
关于积分的说明 15295669
捐赠科研通 4871201
什么是DOI,文献DOI怎么找? 2615855
邀请新用户注册赠送积分活动 1565660
关于科研通互助平台的介绍 1522574