Microscale Oscillating Heat Pipe Model for Prediction of Start-Up, Oscillation Dynamics, and Dryout

作者
Qian Qian,Zhang Xin,Shurong Tian,Justin A. Weibel,Liang Pan
标识
DOI:10.1115/1.4070487
摘要

Abstract Microscale oscillating heat pipes (OHPs) are a promising technology for thermal management of electronic devices, offering high effective thermal conductance and scalability for compact integration. Predictive modeling of OHPs at the microscale remains difficult due to extreme aspect ratios, complex two-phase transport, and transitions across multiple operating regimes. In this study, an efficient one-dimensional (1D) homogeneous model is developed to simulate unsteady two-phase flow dynamics of closed-loop microchannel OHPs, governed by conservation of mass, momentum, and energy. The homogeneous assumption treats liquid and vapor phases as uniform mixtures, enabling use of common variables?temperature, pressure, and velocity?to describe the flow. Thermophysical properties are expressed as functions of internal pressure and temperature, thereby capturing the thermomechanical cycles of vapor compression and expansion that drive OHP operation. The model is applied to multi-turn microchannel OHPs subjected to varying evaporator-to-condenser temperature differences. Simulations capture three operating regimes?pre-startup, oscillation, and dryout?and reproduce the strong dependence of thermal performance on regime. In particular, heat transfer enhancement is observed with the onset of oscillatory flow, consistent with prior experimental findings. The model further demonstrates robustness in predicting oscillations driven solely by internal thermomechanical instabilities, without requiring gravity, capillarity, or other external driving forces. Overall, the proposed framework provides a computationally efficient and reliable tool for investigating coupled thermal-fluid dynamics of microscale OHPs. These findings underscore the utility of homogeneous modeling approaches for guiding design optimization and advancing applications in next-generation thermal management systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zxer发布了新的文献求助10
2秒前
3秒前
4秒前
优雅的千凝完成签到,获得积分10
6秒前
背后访风完成签到 ,获得积分10
8秒前
大酸梅子发布了新的文献求助10
8秒前
搜集达人应助甜大圈采纳,获得30
10秒前
xg发布了新的文献求助10
11秒前
聪慧水池发布了新的文献求助10
11秒前
夜班平安发布了新的文献求助10
12秒前
科研通AI6.1应助zxer采纳,获得100
15秒前
19秒前
19秒前
19秒前
20秒前
莉诺亚完成签到,获得积分10
21秒前
张龙生发布了新的文献求助10
24秒前
li发布了新的文献求助10
25秒前
ZMTW发布了新的文献求助10
25秒前
wuhanfei完成签到,获得积分10
27秒前
zch19970203完成签到,获得积分10
28秒前
30秒前
东风压倒西风完成签到,获得积分10
32秒前
七七发布了新的文献求助30
32秒前
33秒前
打打应助甜大圈采纳,获得10
34秒前
Vxfhfdhkcds完成签到 ,获得积分10
34秒前
zhangsir关注了科研通微信公众号
34秒前
34秒前
LIU完成签到,获得积分10
42秒前
43秒前
神采飞扬应助CHAUSU采纳,获得10
43秒前
49秒前
南与晚霞发布了新的文献求助10
53秒前
56秒前
57秒前
58秒前
59秒前
1分钟前
纸鹤发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Competency Based Human Resource Management 500
How to Develop Robust Scale-up Strategies for Complex Injectable Dosage Forms 450
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5863986
求助须知:如何正确求助?哪些是违规求助? 6396862
关于积分的说明 15650021
捐赠科研通 4978102
什么是DOI,文献DOI怎么找? 2685251
邀请新用户注册赠送积分活动 1628352
关于科研通互助平台的介绍 1586042