Microscale Oscillating Heat Pipe Model for Prediction of Start-Up, Oscillation Dynamics, and Dryout

作者
Qian Qian,Zhang Xin,Shurong Tian,Justin A. Weibel,Liang Pan
标识
DOI:10.1115/1.4070487
摘要

Abstract Microscale oscillating heat pipes (OHPs) are a promising technology for thermal management of electronic devices, offering high effective thermal conductance and scalability for compact integration. Predictive modeling of OHPs at the microscale remains difficult due to extreme aspect ratios, complex two-phase transport, and transitions across multiple operating regimes. In this study, an efficient one-dimensional (1D) homogeneous model is developed to simulate unsteady two-phase flow dynamics of closed-loop microchannel OHPs, governed by conservation of mass, momentum, and energy. The homogeneous assumption treats liquid and vapor phases as uniform mixtures, enabling use of common variables?temperature, pressure, and velocity?to describe the flow. Thermophysical properties are expressed as functions of internal pressure and temperature, thereby capturing the thermomechanical cycles of vapor compression and expansion that drive OHP operation. The model is applied to multi-turn microchannel OHPs subjected to varying evaporator-to-condenser temperature differences. Simulations capture three operating regimes?pre-startup, oscillation, and dryout?and reproduce the strong dependence of thermal performance on regime. In particular, heat transfer enhancement is observed with the onset of oscillatory flow, consistent with prior experimental findings. The model further demonstrates robustness in predicting oscillations driven solely by internal thermomechanical instabilities, without requiring gravity, capillarity, or other external driving forces. Overall, the proposed framework provides a computationally efficient and reliable tool for investigating coupled thermal-fluid dynamics of microscale OHPs. These findings underscore the utility of homogeneous modeling approaches for guiding design optimization and advancing applications in next-generation thermal management systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
shanshan完成签到,获得积分10
2秒前
5秒前
皛鱼完成签到,获得积分10
6秒前
Ezio_sunhao完成签到,获得积分10
8秒前
8秒前
研友_LJpvdZ发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
11秒前
文静若血完成签到,获得积分10
12秒前
西奥牧马完成签到 ,获得积分10
16秒前
某只橘猫君完成签到,获得积分10
16秒前
18秒前
陈尹蓝完成签到 ,获得积分10
19秒前
just_cook完成签到,获得积分10
21秒前
22秒前
xqh完成签到,获得积分10
24秒前
刘刘刘完成签到 ,获得积分20
24秒前
unfeeling8完成签到 ,获得积分10
24秒前
WULAVIVA完成签到,获得积分10
26秒前
流星雨完成签到 ,获得积分10
29秒前
仇敌克星完成签到,获得积分10
30秒前
美满的水卉完成签到,获得积分10
31秒前
科研通AI2S应助科研通管家采纳,获得10
34秒前
慕青应助科研通管家采纳,获得10
34秒前
秋风之墩完成签到,获得积分10
35秒前
量子星尘发布了新的文献求助10
36秒前
所所应助沉默的西牛采纳,获得10
38秒前
科研通AI6应助沉默的西牛采纳,获得10
38秒前
Jasper应助沉默的西牛采纳,获得10
38秒前
隔壁海绵宝宝完成签到,获得积分10
39秒前
41秒前
俏皮诺言完成签到,获得积分10
43秒前
务实青筠完成签到 ,获得积分10
44秒前
心碎的黄焖鸡完成签到 ,获得积分10
44秒前
行者无疆完成签到,获得积分10
48秒前
meiqi完成签到 ,获得积分10
49秒前
十月天秤完成签到,获得积分0
50秒前
2000pluv完成签到 ,获得积分10
50秒前
牛马完成签到 ,获得积分10
55秒前
komisan完成签到 ,获得积分10
58秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
扫描探针电化学 1000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 941
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5438821
求助须知:如何正确求助?哪些是违规求助? 4549927
关于积分的说明 14221215
捐赠科研通 4470924
什么是DOI,文献DOI怎么找? 2450090
邀请新用户注册赠送积分活动 1441058
关于科研通互助平台的介绍 1417594