Cascaded Deep Convolutional Neural Networks as Improved Methods of Preprocessing Raman Spectroscopy Data

拉曼光谱 预处理器 人工智能 卷积神经网络 模式识别(心理学) 深度学习 表面增强拉曼光谱 化学 主成分分析 数据预处理 计算机科学 光谱学 生物系统 拉曼散射 光学 物理 量子力学 生物
作者
Mohammadrahim Kazemzadeh,Miguel Martínez-Calderón,Wei Xu,Lawrence W. Chamley,Colin L. Hisey,Neil G. R. Broderick
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:94 (37): 12907-12918 被引量:44
标识
DOI:10.1021/acs.analchem.2c03082
摘要

Machine learning has had a significant impact on the value of spectroscopic characterization tools, particularly in biomedical applications, due to its ability to detect latent patterns within complex spectral data. However, it often requires extensive data preprocessing, including baseline correction and denoising, which can lead to an unintentional bias during classification. To address this, we developed two deep learning methods capable of fully preprocessing raw Raman spectroscopy data without any human input. First, cascaded deep convolutional neural networks (CNN) based on either ResNet or U-Net architectures were trained on randomly generated spectra with augmented defects. Then, they were tested using simulated Raman spectra, surface-enhanced Raman spectroscopy (SERS) imaging of chemical species, low resolution Raman spectra of human bladder cancer tissue, and finally, classification of SERS spectra from human placental extracellular vesicles (EVs). Both approaches resulted in faster training and complete spectral preprocessing in a single step, with more speed, defect tolerance, and classification accuracy compared to conventional methods. These findings indicate that cascaded CNN preprocessing is ideal for biomedical Raman spectroscopy applications in which large numbers of heterogeneous spectra with diverse defects need to be automatically, rapidly, and reproducibly preprocessed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
菜菜来了发布了新的文献求助10
刚刚
pearl完成签到,获得积分10
1秒前
1秒前
zhq发布了新的文献求助10
1秒前
1秒前
XXXB发布了新的文献求助10
1秒前
chutai完成签到,获得积分10
2秒前
2秒前
飞ss发布了新的文献求助10
2秒前
领导范儿应助凡人采纳,获得10
3秒前
榴莲完成签到,获得积分10
3秒前
3秒前
4秒前
赘婿应助lyq采纳,获得10
4秒前
4秒前
4秒前
4秒前
5秒前
5秒前
123发布了新的文献求助10
5秒前
5秒前
5秒前
钱靖儿完成签到,获得积分10
6秒前
6秒前
思源应助土土采纳,获得10
6秒前
英俊的铭应助hui采纳,获得10
6秒前
7秒前
piano发布了新的文献求助10
7秒前
研友_VZG7GZ应助顺利毕业采纳,获得10
7秒前
俭朴映阳发布了新的文献求助10
7秒前
grzzz发布了新的文献求助10
7秒前
淡定面包完成签到 ,获得积分10
7秒前
8秒前
8秒前
8秒前
8秒前
8秒前
安静的纸飞机完成签到,获得积分10
9秒前
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
复杂系统建模与弹性模型研究 2000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1021
睡眠呼吸障碍治疗学 600
Input 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5487055
求助须知:如何正确求助?哪些是违规求助? 4586551
关于积分的说明 14409745
捐赠科研通 4517224
什么是DOI,文献DOI怎么找? 2475174
邀请新用户注册赠送积分活动 1460997
关于科研通互助平台的介绍 1434012