Enriching contextualized semantic representation with textual information transmission for COVID-19 fake news detection: A study on English and Persian

可读性 计算机科学 人工智能 社会化媒体 自然语言处理 造谣 分类器(UML) 卷积神经网络 语言学 情报检索 万维网 哲学 程序设计语言
作者
Masood Ghayoomi
出处
期刊:Digital Scholarship in the Humanities [Oxford University Press]
卷期号:38 (1): 99-110 被引量:5
标识
DOI:10.1093/llc/fqac049
摘要

Abstract The COVID-19 pandemic provided an infodemic situation to face people in the society with a massive amount of information due to accessing social media, such as Twitter and Instagram. These platforms have made the information circulation easy and paved the ground to mix information and misinformation. One solution to prevent an infodemic situation is avoiding false information distribution and filtering the fake news to reduce the negative impact of such news in the society. This article aims at studying the properties of fake news in English and Persian using the textual information transmitted through language in the news. To this end, the properties existed in a text based on information theory, stylometry information from raw texts, readability of the texts, and linguistic information, such as phonology, syntax, and morphology, are studied. In this study, we use the XLM-RoBERTa representation with a convolutional neural network classifier as the basic model to detect English and Persian COVID-19 fake news. In addition, we propose different learning scenarios such that different feature sets are concatenated with the contextualized representation. According to the experimental results, adding any of the textual information to the basic model has improved the performance of the classifier for both English and Persian. Information about readability of the texts and stylometry features have been the most effective features for detecting English fake news and improved the performance by 2.72% based on F-measure. Augmenting this feature setting with the information amount and linguistic morphological information improved the performance of the classifier by 3.79% based on F-measure for Persian.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lz完成签到 ,获得积分10
刚刚
一碗鱼发布了新的文献求助10
2秒前
NexusExplorer应助发光且犯二采纳,获得10
2秒前
彭于晏应助dildil采纳,获得10
2秒前
2秒前
王倩驳回了打打应助
2秒前
3秒前
ljl关闭了ljl文献求助
3秒前
liu完成签到,获得积分20
3秒前
霸气雯完成签到,获得积分10
5秒前
丘比特应助唯雷采纳,获得10
5秒前
yyydd完成签到,获得积分20
6秒前
wb发布了新的文献求助10
6秒前
6秒前
Nicole完成签到 ,获得积分10
9秒前
花花花花发布了新的文献求助10
9秒前
theverve发布了新的文献求助10
9秒前
田様应助一碗鱼采纳,获得10
12秒前
14秒前
14秒前
14秒前
15秒前
Akim应助Don采纳,获得10
15秒前
yuhomie完成签到,获得积分10
15秒前
小白在努力完成签到,获得积分10
16秒前
theverve完成签到,获得积分10
16秒前
xx完成签到,获得积分20
17秒前
17秒前
佟蓝血发布了新的文献求助10
18秒前
huang发布了新的文献求助10
18秒前
唯雷发布了新的文献求助10
19秒前
量子星尘发布了新的文献求助10
20秒前
111111发布了新的文献求助20
20秒前
Forever发布了新的文献求助10
20秒前
欣欣发布了新的文献求助10
20秒前
NexusExplorer应助科研通管家采纳,获得30
21秒前
Lucas应助科研通管家采纳,获得10
21秒前
21秒前
小二郎应助科研通管家采纳,获得10
21秒前
小马甲应助科研通管家采纳,获得30
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5480459
求助须知:如何正确求助?哪些是违规求助? 4581607
关于积分的说明 14381381
捐赠科研通 4510179
什么是DOI,文献DOI怎么找? 2471686
邀请新用户注册赠送积分活动 1458093
关于科研通互助平台的介绍 1431812