An integrated method for product ranking through online reviews based on evidential reasoning theory and stochastic dominance

随机优势 优势(遗传学) 排名(信息检索) 证据推理法 计算机科学 产品(数学) 人工智能 数学 情报检索 管理科学 计量经济学 决策支持系统 经济 化学 商业决策图 基因 生物化学 几何学
作者
Jindong Qin,Mingzhi Zeng
出处
期刊:Information Sciences [Elsevier]
卷期号:612: 37-61 被引量:17
标识
DOI:10.1016/j.ins.2022.08.070
摘要

• Propose an integrated method for product ranking through online reviews. • A complete framework to solve the ranking problem is developed. • A data-driven method of applying ER theory to sentiment analysis is proposed. • An MCDM-based method of ranking products with SD and PROMETHEE-II is proposed. • Propose an SMAA-PROMETHEE method for sensitivity analysis of the parameters. Online reviews play an important role in consumers’ purchasing decisions. However, many online reviews confuse consumers when they wish to make a purchase but lack experience. To solve the problem of product ranking based on online reviews, two important issues must be addressed: sentiment analysis and product ranking based on multi-criteria decision-making (MCDM) methods. Therefore, this paper proposes an integrated MCDM method for product ranking through online reviews based on evidential reasoning (ER) theory and stochastic dominance (SD) rules. First, online reviews are preprocessed to obtain product attributes and weight values. Then, we use naive Bayes (NB), logistic regression (LR), and support vector machines (SVM) for the sentiment analysis of online reviews, and the results of the three classifiers are aggregated using ER theory. In addition, according to the confidence distribution matrix of sentiment orientations, SD rules are used to determine the stochastic dominance relations between pairwise alternatives for each attribute. Furthermore, we use the stochastic multi-criteria acceptability analysis (SMAA)-PROMETHEE method to obtain the final product ranking results and conduct sensitivity analysis. Finally, a case study on ranking computer products from JD Mall through online reviews is provided to illustrate the validity of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助草莓三明治采纳,获得10
刚刚
ding应助11楼阿水采纳,获得10
刚刚
充电宝应助汤圆采纳,获得10
刚刚
王大锤2015发布了新的文献求助10
刚刚
1秒前
哈哈哈发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
来开卡丁车完成签到 ,获得积分10
2秒前
yolo完成签到,获得积分10
2秒前
纪洪森发布了新的文献求助10
2秒前
wxxz发布了新的文献求助10
2秒前
拾一发布了新的文献求助10
3秒前
Solar_Parsifal完成签到,获得积分10
3秒前
英吉利25发布了新的文献求助10
3秒前
4秒前
英姑应助133采纳,获得10
4秒前
小怪完成签到,获得积分10
5秒前
Peng应助nihaku采纳,获得10
6秒前
7秒前
guoguo发布了新的文献求助10
7秒前
xiatl完成签到,获得积分10
7秒前
大知闲闲完成签到 ,获得积分10
7秒前
lwl666完成签到,获得积分10
8秒前
8秒前
老阎应助小鹿5460采纳,获得30
8秒前
dery发布了新的文献求助10
8秒前
8秒前
小梨子发布了新的文献求助10
8秒前
8秒前
多罗罗完成签到,获得积分10
9秒前
9秒前
wu完成签到,获得积分10
9秒前
10秒前
研友_VZG7GZ应助哈哈哈采纳,获得10
10秒前
10秒前
勤恳风华完成签到,获得积分10
11秒前
Eric发布了新的文献求助10
11秒前
Vincent完成签到,获得积分20
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
A Modern Guide to the Economics of Crime 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5269782
求助须知:如何正确求助?哪些是违规求助? 4428172
关于积分的说明 13782838
捐赠科研通 4305793
什么是DOI,文献DOI怎么找? 2362903
邀请新用户注册赠送积分活动 1358502
关于科研通互助平台的介绍 1321292