亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Individual Prediction of Remission Based on Clinical Features Following Electroconvulsive Therapy

电休克疗法 重性抑郁障碍 神经影像学 萧条(经济学) 双相情感障碍 抗抑郁药 心理学 医学 精神科 内科学 心情 焦虑 宏观经济学 经济 认知
作者
Koji Nakajima,Akihiro Takamiya,Takahito Uchida,Satoshi Kudo,Hana Nishida,Fusaka Minami,Yasuharu Yamamoto,Bun Yamagata,Masaru Mimura,Jinichi Hirano
出处
期刊:The Journal of Clinical Psychiatry [Physicians Postgraduate Press, Inc.]
卷期号:83 (5) 被引量:5
标识
DOI:10.4088/jcp.21m14293
摘要

Objective: Previous prediction models for electroconvulsive therapy (ECT) responses have predominantly been based on neuroimaging data, which has precluded widespread application for severe cases in real-world clinical settings. The aims of this study were (1) to build a clinically useful prediction model for ECT remission based solely on clinical information and (2) to identify influential features in the prediction model.Methods: We conducted a retrospective chart review to collect data (registered between April 2012 and March 2019) from individuals with depression (unipolar major depressive disorder or bipolar disorder) diagnosed via DSM-IV-TR criteria who received ECT at Keio University Hospital. Clinical characteristics were used as candidate features. A light gradient boosting machine was used for prediction, and 5-fold cross-validation was performed to validate our prediction model.Results: In total, 177 patients with depression underwent ECT during the study period. The remission rate was 63%. Our model predicted individual patient outcomes with 71% accuracy (sensitivity, 86%; specificity, 46%). A shorter duration of the current episodes, lower baseline severity, higher dose of antidepressant medications before ECT, and lower body mass index were identified as important features for predicting remission following ECT.Conclusions: We developed a prediction model for ECT remission based solely on clinical information. Our prediction model demonstrated accuracy comparable to that in previous reports. Our model suggests that introducing ECT earlier in the treatment course may contribute to improvements in clinical outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiongjian完成签到,获得积分10
21秒前
美味小7完成签到 ,获得积分10
25秒前
科研通AI5应助xiongjian采纳,获得10
26秒前
天天快乐应助ma采纳,获得10
50秒前
丁老三完成签到 ,获得积分10
54秒前
59秒前
ma发布了新的文献求助10
1分钟前
1分钟前
家家完成签到 ,获得积分10
1分钟前
ineffable完成签到,获得积分20
1分钟前
wangrblzu应助安详梦芝采纳,获得10
1分钟前
1分钟前
mzp1121发布了新的文献求助10
2分钟前
CodeCraft应助Mong那粒沙采纳,获得10
2分钟前
晟sheng完成签到 ,获得积分10
2分钟前
morena应助科研通管家采纳,获得20
3分钟前
科研通AI5应助科研通管家采纳,获得10
3分钟前
张先生完成签到 ,获得积分10
3分钟前
3分钟前
Nichols完成签到,获得积分10
3分钟前
fengfenghao完成签到,获得积分10
3分钟前
华仔应助juju采纳,获得10
3分钟前
4分钟前
4分钟前
科研通AI5应助ma采纳,获得10
4分钟前
Putty完成签到,获得积分10
4分钟前
juju发布了新的文献求助10
4分钟前
4分钟前
一路微笑完成签到,获得积分10
4分钟前
ma发布了新的文献求助10
4分钟前
炮炮关注了科研通微信公众号
4分钟前
Tumumu完成签到,获得积分10
4分钟前
5分钟前
Mong那粒沙发布了新的文献求助10
5分钟前
大个应助Mong那粒沙采纳,获得10
5分钟前
6分钟前
6分钟前
6分钟前
6分钟前
fqx379发布了新的文献求助10
6分钟前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3840784
求助须知:如何正确求助?哪些是违规求助? 3382680
关于积分的说明 10526302
捐赠科研通 3102551
什么是DOI,文献DOI怎么找? 1708888
邀请新用户注册赠送积分活动 822765
科研通“疑难数据库(出版商)”最低求助积分说明 773557