Prediction of drilling fluid lost-circulation zone based on deep learning

人工神经网络 井漏 人工智能 计算机科学 试验装置 深度学习 规范化(社会学) 试验数据 机器学习 钻井液 统计 钻探 数学 工程类 机械工程 社会学 程序设计语言 人类学
作者
Yili Kang,Chenglin Ma,Chengyuan Xu,Lijun You,Zhenjiang You
出处
期刊:Energy [Elsevier]
卷期号:276: 127495-127495 被引量:44
标识
DOI:10.1016/j.energy.2023.127495
摘要

Lost circulation has become a crucial technical problem that restricts the quality and efficiency improvement of the drilling operation in deep oil and gas wells. The lost-circulation zone prediction has always been a hot and difficult research topic on the prevention and control of lost circulation. This study applied machine learning and statistical methods to deeply mine 105 groups and 29 features of loss data from typical loss block M. After removing 10 sets of noise data, the methods of mean removal, range scaling and normalization were used to pre-treat the 95 sets of the loss data. The multi-factor analysis of variance (ANOVA) and random forest algorithm were adopted to determine the 13 main factors affecting the lost circulation. The three typical deep learning neural network models were improved, the parameters in the models were adjusted, the neural network models with different structures were compared according to the PR curves, and the best model structure was built. The pre-treated loss data in 95 sets with 13 features were divided into the training set and test set by a ratio of 4:1. The model performance was evaluated using F1 score, accuracy, and recall rate. The trained model was successfully applied to the G block with severe leakage. The results show that the capsule network model is better than the BP neural network model and the convolutional neural network model. It stabilizes at 300 training rounds, with a prediction accuracy of 94.73%. The improved model can be applied to lost-circulation control in the field and provide guidance on leakage prevention and plugging operations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田田完成签到 ,获得积分10
1秒前
小新应助小王同志采纳,获得10
2秒前
迪歪歪发布了新的文献求助10
2秒前
整齐的涵雁完成签到 ,获得积分10
2秒前
重要从丹发布了新的文献求助10
3秒前
avalanche发布了新的文献求助10
3秒前
溪水发布了新的文献求助10
3秒前
热心仇天完成签到,获得积分20
3秒前
笑点低的碧琴完成签到,获得积分10
3秒前
烧饼拌糖完成签到,获得积分10
5秒前
留白守墨完成签到,获得积分10
5秒前
5秒前
gdgk发布了新的文献求助10
5秒前
JamesPei应助ran采纳,获得10
5秒前
在水一方应助舒服的蝴蝶采纳,获得10
5秒前
jun发布了新的文献求助10
5秒前
科研通AI2S应助xslj采纳,获得10
5秒前
王小冉发布了新的文献求助10
6秒前
6秒前
6秒前
自信的伊发布了新的文献求助10
6秒前
漂亮的笑柳完成签到,获得积分20
6秒前
积极黄豆发布了新的文献求助10
7秒前
7秒前
柠檬酸完成签到,获得积分10
7秒前
阿六儿完成签到,获得积分10
7秒前
科研通AI6应助坦率的匪采纳,获得10
8秒前
9秒前
9秒前
爱喝拿铁铁完成签到,获得积分10
9秒前
10秒前
10秒前
Cc完成签到,获得积分10
10秒前
希望天下0贩的0应助茜茜采纳,获得10
11秒前
11秒前
NIHAOHAO1125完成签到,获得积分20
11秒前
11秒前
XY发布了新的文献求助10
11秒前
小王同志完成签到,获得积分10
11秒前
12秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5614191
求助须知:如何正确求助?哪些是违规求助? 4699280
关于积分的说明 14902179
捐赠科研通 4738786
什么是DOI,文献DOI怎么找? 2547547
邀请新用户注册赠送积分活动 1511285
关于科研通互助平台的介绍 1473666