Machine Learning-Based Framework for Predicting Creep Rupture Life of Modified 9Cr-1Mo Steel

蠕动 克里金 计算机科学 机器学习 人工智能 特征选择 适应性 试验数据 材料科学 冶金 程序设计语言 生态学 生物
作者
Mengyu Chai,Yuhang He,Yongquan Li,Yan Song,Zaoxiao Zhang,Quan Duan
出处
期刊:Applied sciences [Multidisciplinary Digital Publishing Institute]
卷期号:13 (8): 4972-4972 被引量:5
标识
DOI:10.3390/app13084972
摘要

Efficient and accurate predictions of creep rupture life are essential for ensuring the integrity of high-temperature components. In this work, a machine learning-based framework is developed for the quick screening of crucial features and accurate prediction of the creep rupture life of modified 9Cr-1Mo steels. A feature screening protocol based on correlation filtering and sequential feature selection techniques is established for identifying critical features that significantly affect the prediction performance from a set of numerous descriptors. Moreover, several machine learning algorithms are employed for model training to examine their ability to map the complex nonlinear interactions between multivariate features and creep life. The results show that the test stress, test temperature, tempering time, and the contents of S and Cr are identified as the crucial features that greatly influence the life prediction performance of modified 9Cr-1Mo steels. Moreover, the Gaussian process regression (GPR) model with these five selected crucial features exhibits the highest prediction accuracy among various machine learning strategies. Finally, an additional dataset out of model training and testing is used to further validate the efficacy of the constructed GPR model. The validated results demonstrate that most creep data are distributed inside the two-factor band lines. Results from this work show that the developed machine learning framework can offer high accuracy and excellent adaptability in predicting the creep life of modified 9Cr-1Mo steels under various environmental conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
屿风完成签到 ,获得积分10
3秒前
5秒前
果果完成签到,获得积分10
6秒前
WYN发布了新的文献求助10
6秒前
妮妮完成签到,获得积分10
6秒前
7秒前
lcw完成签到,获得积分10
7秒前
CYY发布了新的文献求助10
8秒前
哭泣以筠完成签到 ,获得积分10
10秒前
10秒前
11秒前
大仙儿完成签到 ,获得积分10
11秒前
Linda发布了新的文献求助10
12秒前
12秒前
muyun发布了新的文献求助10
13秒前
HEIKU应助科研通管家采纳,获得10
13秒前
HEIKU应助科研通管家采纳,获得10
13秒前
cdercder应助科研通管家采纳,获得60
13秒前
科目三应助科研通管家采纳,获得10
13秒前
无花果应助科研通管家采纳,获得10
13秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
orixero应助科研通管家采纳,获得10
13秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
13秒前
冯不可完成签到,获得积分10
14秒前
15秒前
Archy完成签到,获得积分10
17秒前
默默白开水完成签到 ,获得积分10
17秒前
Sun发布了新的文献求助10
17秒前
17秒前
黄诺发布了新的文献求助10
19秒前
席冥完成签到,获得积分10
19秒前
汉堡包应助小猫多鱼采纳,获得10
20秒前
重要的小刘完成签到,获得积分10
20秒前
wahaha发布了新的文献求助10
20秒前
Sun完成签到,获得积分10
22秒前
wxy完成签到,获得积分10
22秒前
羁绊完成签到,获得积分10
22秒前
lu完成签到,获得积分10
22秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780337
求助须知:如何正确求助?哪些是违规求助? 3325661
关于积分的说明 10223791
捐赠科研通 3040806
什么是DOI,文献DOI怎么找? 1669006
邀请新用户注册赠送积分活动 798963
科研通“疑难数据库(出版商)”最低求助积分说明 758648