MangoStem-YOLOv8n: An improved YOLOv8n for mango and stem detection in natural orchard environments

作者
Shengang Diao,Jianghe Feng,Bin Zhang,Yuyang Xia,Yang Gu,Dong Li,Wei Fu
出处
期刊:Smart agricultural technology [Elsevier]
卷期号:12: 101485-101485
标识
DOI:10.1016/j.atech.2025.101485
摘要

To address low accuracy of fruiting stem and mango detection and low efficiency of end-side deployment of real-time detection in complex orchard environments, this study reported a real-time detection algorithm for fruiting stem and mango detection with a MangoStem-YOLOv8n lightweight network model and deployed the improved model to edge devices. Firstly, the MobileNetV4 lightweight network structure was used instead of the backbone feature extraction network of YOLOv8 to reduce the model complexity. Then, the IDC (Inception Depthwise Convolution) module was fused in the MobileNetV4 network, and the MobiVari (MobileNet Variants) structure was fused in the SPPF module to improve the feature extraction capability of the model for both mango and fruiting stems. Then, the original C2f module was replaced with FasterC3 module in the neck network to improve the feature fusion ability and detection accuracy of the model. Finally, the improved model was deployed to edge devices after optimization by TensorRT. Experimental results indicated that the mean average precision of the improved model was 89.6 %, which was 1.2 % higher compared with the YOLOv8n model, the weight file size was only 4.49 MB, the number of GFLOPs of the model was 7.0 G, and the number of parameters was 2.12 M, which was reduced by 27.3 %, 13.5 %, and 29.6 %, respectively, compared with the YOLOv8n model. After the improved model is deployed to edge devices, the detection frame rate has been increased from 5.9 FPS to 15.2 FPS, significantly improving the efficiency and providing a reference for intelligent automatic mango picking technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助kekekek采纳,获得10
2秒前
科研菜鸡完成签到 ,获得积分10
3秒前
香蕉觅云应助刘子怡采纳,获得10
3秒前
掠影完成签到,获得积分10
4秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
橙子发布了新的文献求助10
11秒前
xxfsx应助安冉然采纳,获得10
12秒前
小丽完成签到,获得积分10
13秒前
半颗橙子完成签到,获得积分10
14秒前
15秒前
16秒前
沉默豆芽完成签到,获得积分10
17秒前
打打应助半颗橙子采纳,获得10
18秒前
19秒前
c182484455完成签到,获得积分10
21秒前
玩命的书琴完成签到,获得积分10
22秒前
共享精神应助彭彦舟采纳,获得10
22秒前
22秒前
刘子怡发布了新的文献求助10
22秒前
拓跋涵易完成签到,获得积分10
24秒前
xiaotong完成签到,获得积分10
26秒前
王博士完成签到,获得积分10
26秒前
kk发布了新的文献求助10
27秒前
28秒前
迷人的勒完成签到,获得积分20
30秒前
30秒前
31秒前
毛儿豆儿发布了新的文献求助10
33秒前
迷人的勒发布了新的文献求助10
33秒前
33秒前
科研通AI2S应助123采纳,获得10
33秒前
量子星尘发布了新的文献求助10
34秒前
35秒前
ddddansu完成签到,获得积分10
35秒前
黄佳慧发布了新的文献求助10
36秒前
传奇3应助可可采纳,获得10
37秒前
ddddansu发布了新的文献求助10
41秒前
42秒前
42秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 600
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425342
求助须知:如何正确求助?哪些是违规求助? 4539424
关于积分的说明 14167973
捐赠科研通 4456912
什么是DOI,文献DOI怎么找? 2444339
邀请新用户注册赠送积分活动 1435316
关于科研通互助平台的介绍 1412740