已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Comparative Analysis on the Classification of Pineapple Varieties Using Thermal Imaging Coupled With Transfer Learning.

学习迁移 人工智能 计算机科学
作者
Norhashila Hashim,Maimunah Mohd Ali
出处
期刊:PubMed 卷期号:90 (9): e70530-e70530
标识
DOI:10.1111/1750-3841.70530
摘要

Advanced intelligent systems are becoming a significant trend, especially in the classification of tropical fruits due to their unique flavor and taste. As one of the most popular tropical fruits worldwide, pineapple (Ananas comosus) has a great chemical composition and is high in nutritional value. A non-destructive method for the determination of pineapple varieties was developed, which utilized thermal imaging and deep learning techniques. This study presents a comparative analysis of three deep learning models, including ResNet, VGG16, and InceptionV3, for the rapid classification of pineapple varieties using thermal imaging and transfer learning. The dataset comprises 3240 thermal images from three different pineapple varieties, including Moris, Josapine, and N36, under controlled temperature conditions (5°C, 10°C, and 25°C), resulting in a total of three classification classes. All convolutional neural network (CNN) architectures were fine-tuned, and data augmentation techniques were applied to improve model generalization. The efficiency of hyperparameters was evaluated to improve the model accuracy, whereas the data augmentation was carried out to avoid model overfitting. The highest classification accuracy of 99 % was achieved via InceptionV3. The precision, recall, and F1-score demonstrate promising results with the values higher than 0.85 for all pineapple varieties. This approach demonstrated that transfer learning with CNNs is significantly promising as a feature extraction method for the determination of physicochemical properties in pineapple fruit. An ablation study confirmed the added benefit of using both data augmentation and transfer learning. While model architecture innovation was not the primary goal, this work contributes by benchmarking established CNN models for agricultural thermal imaging applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
晚云烟月完成签到,获得积分10
2秒前
2秒前
AS完成签到,获得积分10
5秒前
jyy完成签到,获得积分10
6秒前
Ava应助彩色若菱采纳,获得10
7秒前
7秒前
斯文败类应助许可俊采纳,获得10
7秒前
科研通AI6应助绺妙采纳,获得10
7秒前
8秒前
8秒前
10秒前
11秒前
12秒前
不安老虎发布了新的文献求助10
13秒前
15秒前
15秒前
15秒前
17秒前
清爽语柳发布了新的文献求助10
18秒前
许可俊发布了新的文献求助10
19秒前
斯文败类应助巫马书桃采纳,获得10
19秒前
小马甲应助亢奋的小王采纳,获得10
19秒前
21秒前
fishbig完成签到,获得积分10
23秒前
23秒前
平常的芝麻完成签到,获得积分20
23秒前
25秒前
朝歌完成签到,获得积分10
25秒前
fishbig发布了新的文献求助10
25秒前
Jasper应助victor采纳,获得10
28秒前
巫马书桃发布了新的文献求助10
31秒前
33秒前
清爽语柳发布了新的文献求助10
33秒前
34秒前
35秒前
35秒前
uikymh完成签到 ,获得积分0
36秒前
彩色若菱发布了新的文献求助10
38秒前
Yuki完成签到 ,获得积分10
39秒前
43秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4539721
求助须知:如何正确求助?哪些是违规求助? 3973836
关于积分的说明 12309708
捐赠科研通 3640803
什么是DOI,文献DOI怎么找? 2004770
邀请新用户注册赠送积分活动 1040206
科研通“疑难数据库(出版商)”最低求助积分说明 929337