CAT+: Investigating and Enhancing Audio-Visual Understanding in Large Language Models

计算机科学 视听 人工智能 计算机视觉 自然语言处理 语音识别 人机交互 多媒体
作者
Qilang Ye,Zitong Yu,Rui Shao,Yawen Cui,Xiangui Kang,Xin Liu,Philip H. S. Torr,Xiaochun Cao
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:47 (10): 8674-8690 被引量:2
标识
DOI:10.1109/tpami.2025.3582389
摘要

Multimodal Large Language Models (MLLMs) have gained significant attention due to their rich internal implicit knowledge for cross-modal learning. Although advances in bringing audio-visuals into LLMs have resulted in boosts for a variety of Audio-Visual Question Answering (AVQA) tasks, they still face two crucial challenges: 1) audio-visual ambiguity, and 2) audio-visual hallucination. Existing MLLMs can respond to audio-visual content, yet sometimes fail to describe specific objects due to the ambiguity or hallucination of responses. To overcome the two aforementioned issues, we introduce the CAT+, which enhances MLLM to ensure more robust multimodal understanding. We first propose the Sequential Question-guided Module (SQM), which combines tiny transformer layers and cascades Q-Formers to realize a solid audio-visual grounding. After feature alignment and high-quality instruction tuning, we introduce Ambiguity Scoring Direct Preference Optimization (AS-DPO) to correct the problem of CAT+ bias toward ambiguous descriptions. To explore the hallucinatory deficits of MLLMs in dynamic audio-visual scenes, we build a new Audio-visual Hallucination Benchmark, named AVHbench. This benchmark detects the extent of MLLM's hallucinations across three different protocols in the perceptual object, counting, and holistic description tasks. Extensive experiments across video-based understanding, open-ended, and close-ended AVQA demonstrate the superior performance of our method. The AVHbench is released at https://github.com/rikeilong/Bay-CAT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
身强力壮运气好完成签到,获得积分10
1秒前
kangshuai完成签到,获得积分0
3秒前
缓慢的冬云完成签到,获得积分0
6秒前
蜡笔小z完成签到 ,获得积分10
6秒前
赘婿应助wang5945采纳,获得10
8秒前
风格完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
易槐完成签到 ,获得积分10
12秒前
WHUT-Batteries完成签到,获得积分10
13秒前
15秒前
淞淞于我完成签到 ,获得积分10
16秒前
七QI完成签到 ,获得积分10
16秒前
KYTQQ完成签到 ,获得积分10
16秒前
南枝焙雪完成签到 ,获得积分10
17秒前
量子星尘发布了新的文献求助10
25秒前
COIN_77完成签到 ,获得积分10
26秒前
青木完成签到 ,获得积分10
28秒前
2316690509完成签到 ,获得积分10
28秒前
程志强完成签到 ,获得积分10
34秒前
舒服的月饼完成签到 ,获得积分10
34秒前
依桉完成签到 ,获得积分10
39秒前
蜀山刀客完成签到,获得积分10
39秒前
情怀应助Lee0923采纳,获得10
40秒前
桃子完成签到 ,获得积分10
42秒前
45秒前
xiao完成签到,获得积分10
45秒前
量子星尘发布了新的文献求助10
46秒前
饱满的荧完成签到 ,获得积分10
48秒前
jeffrey完成签到,获得积分10
49秒前
50秒前
LIZHEN发布了新的文献求助10
50秒前
CC完成签到 ,获得积分10
51秒前
云淡风清完成签到 ,获得积分10
54秒前
执着新蕾完成签到,获得积分10
55秒前
糊涂涂完成签到 ,获得积分10
56秒前
Bruce完成签到,获得积分10
58秒前
ssk完成签到,获得积分10
59秒前
lucia5354完成签到,获得积分10
59秒前
梅特卡夫完成签到,获得积分10
1分钟前
1分钟前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584850
求助须知:如何正确求助?哪些是违规求助? 4668735
关于积分的说明 14771707
捐赠科研通 4615882
什么是DOI,文献DOI怎么找? 2530253
邀请新用户注册赠送积分活动 1499111
关于科研通互助平台的介绍 1467590