A Data-Driven Approach for Internal Crack Prediction in Continuous Casting of HSLA Steels Using CTGAN and CatBoost

人工智能 计算机科学 机器学习 支持向量机 可靠性(半导体) 人工神经网络 可视化 灵敏度(控制系统) 模式识别(心理学) 数据挖掘 工程类 功率(物理) 电子工程 量子力学 物理
作者
Mengying Geng,Haonan Ma,Shuangli Liu,Zhongrong Zhou,Lei Xing,Yibo Ai,Weidong Zhang
出处
期刊:Materials [Multidisciplinary Digital Publishing Institute]
卷期号:18 (15): 3599-3599
标识
DOI:10.3390/ma18153599
摘要

Internal crack defects in high-strength low-alloy (HSLA) steels during continuous casting pose significant challenges to downstream processing and product reliability. However, due to the inherent class imbalance in industrial defect datasets, conventional machine learning models often suffer from poor sensitivity to minority class instances. This study proposes a predictive framework that integrates conditional tabular generative adversarial network (CTGAN) for synthetic minority sample generation and CatBoost for classification. A dataset of 733 process records was collected from a continuous caster, and 25 informative features were selected using mutual information. CTGAN was employed to augment the minority class (crack) samples, achieving a balanced training set. Feature distribution analysis and principal component visualization indicated that the synthetic data effectively preserved the statistical structure of the original minority class. Compared with the other machine learning methods, including KNN, SVM, and MLP, CatBoost achieved the highest metrics, with an accuracy of 0.9239, precision of 0.9041, recall of 0.9018, and F1-score of 0.9022. Results show that CTGAN-based augmentation improves classification performance across all models. These findings highlight the effectiveness of GAN-based augmentation for imbalanced industrial data and validate the CTGAN–CatBoost model as a robust solution for online defect prediction in steel manufacturing.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
灵泉完成签到,获得积分10
1秒前
小曹完成签到,获得积分10
1秒前
王智勇发布了新的文献求助10
1秒前
zhishiyumi完成签到,获得积分10
2秒前
现代的南风完成签到 ,获得积分10
2秒前
wanci应助筱静采纳,获得10
3秒前
ww发布了新的文献求助30
3秒前
3秒前
3秒前
4秒前
明理含之发布了新的文献求助60
4秒前
puff完成签到,获得积分10
4秒前
牛顿的苹果完成签到,获得积分10
4秒前
5秒前
5秒前
Ac完成签到,获得积分10
5秒前
5秒前
科研通AI2S应助积极凡阳采纳,获得10
5秒前
NexusExplorer应助JHY采纳,获得10
5秒前
simon完成签到 ,获得积分10
6秒前
6秒前
sunglow11完成签到,获得积分0
6秒前
GeminiWU发布了新的文献求助10
7秒前
Lynnlovelove完成签到,获得积分10
7秒前
7秒前
hqq完成签到,获得积分10
7秒前
轩辕山槐完成签到,获得积分10
7秒前
7秒前
怕孤独的忆南完成签到,获得积分10
7秒前
zhaoyue完成签到 ,获得积分10
8秒前
8秒前
夏春丽发布了新的文献求助20
8秒前
缓慢语雪发布了新的文献求助10
8秒前
演化的蛙鱼完成签到,获得积分10
8秒前
小夏完成签到,获得积分10
8秒前
zyl完成签到,获得积分10
8秒前
坦率惊蛰完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5067449
求助须知:如何正确求助?哪些是违规求助? 4289266
关于积分的说明 13362795
捐赠科研通 4108762
什么是DOI,文献DOI怎么找? 2249909
邀请新用户注册赠送积分活动 1255368
关于科研通互助平台的介绍 1187865