细菌
营养物
氮气
磷
废水
蓝藻
铵
生物
化学
食品科学
环境工程
生态学
环境科学
遗传学
有机化学
作者
Hongyuan Liu,Naif Abdullah Al‐Dhabi,Huiling Jiang,Bingzhi Liu,Taiping Qing,Bo Feng,Tengfei Ma,Wangwang Tang,Peng Zhang
出处
期刊:Water Research
[Elsevier BV]
日期:2024-04-15
卷期号:256: 121624-121624
被引量:4
标识
DOI:10.1016/j.watres.2024.121624
摘要
The algal-bacterial wastewater treatment process has been proven to be highly efficient in removing nutrients and recovering nitrogen (N). However, the recovery of the valuable N-rich biopolymer, cyanophycin, remains limited. This research explored the synthesis mechanism and recovery potential of cyanophycin within two algal-bacterial symbiosis reactors. The findings reveal that the synergy between algae and bacteria enhances the removal of N and phosphorus. The crude contents of cyanophycin in the algal-bacterial consortia reached 115 and 124 mg/g of mixed liquor suspended solids (MLSS), respectively, showing an increase of 11.7%–20.4% (p < 0.001) compared with conventional activated sludge. Among the 170 metagenome-assembled genomes (MAGs) analyzed, 50 were capable of synthesizing cyanophycin, indicating that cyanophycin producers are common in algal-bacterial systems. The compositions of cyanophycin producers in the two algal-bacterial reactors were affected by different lighting initiation time. The study identified two intracellular synthesis pathways for cyanophycin. Approximately 36 MAGs can synthesize cyanophycin de novo using ammonium and glucose, while the remaining 14 MAGs require exogenous arginine for production. Notably, several MAGs with high abundance are capable of assimilating both nitrate and ammonium into cyanophycin, demonstrating a robust N utilization capability. This research also marks the first identification of potential horizontal gene transfer of the cyanophycin synthase encoding gene (cphA) within the wastewater microbial community. This suggests that the spread of cphA could expand the population of cyanophycin producers. The study offers new insights into recycling the high-value N-rich biopolymer cyanophycin, contributing to the advancement of wastewater resource utilization.
科研通智能强力驱动
Strongly Powered by AbleSci AI