Application of machine learning algorithms in classifying postoperative success in metabolic bariatric surgery: Acomprehensive study

机器学习 朴素贝叶斯分类器 决策树 人工智能 背景(考古学) 计算机科学 医疗保健 统计分类 贝叶斯网络 算法 数据挖掘 支持向量机 地理 经济增长 经济 考古
作者
José Alberto Benítez‐Andrades,Camino Prada-García,Rubén García‐Fernández,María D. Ballesteros‐Pomar,María Inmaculada González Alonso,Antonio Serrano García
出处
期刊:Digital health [SAGE]
卷期号:10
标识
DOI:10.1177/20552076241239274
摘要

Objectives: Metabolic Bariatric Surgery (MBS) is a critical intervention for patients living with obesity and related health issues. Accurate classification and prediction of patient outcomes are vital for optimizing treatment strategies. This study presents a novel machine learning approach to classify patients in the context of metabolic bariatric surgery, providing insights into the efficacy of different models and variable types. Methods: Various machine learning models, including GaussianNB, ComplementNB, KNN, Decision Tree, KNN with RandomOverSampler, and KNN with SMOTE, were applied to a dataset of 73 patients. The dataset, comprising psychometric, socioeconomic, and analytical variables, was analyzed to determine the most efficient predictive model. The study also explored the impact of different variable groupings and oversampling techniques. Results: Experimental results indicate average accuracy values as high as 66.7% for the best model. Enhanced versions of KNN and Decision Tree, along with variations of KNN such as RandomOverSampler and SMOTE, yielded the best results. Conclusions: The study unveils a promising avenue for classifying patients in the realm of metabolic bariatric surgery. The results underscore the importance of selecting appropriate variables and employing diverse approaches to achieve optimal performance. The developed system holds potential as a tool to assist healthcare professionals in decision-making, thereby enhancing metabolic bariatric surgery outcomes. These findings lay the groundwork for future collaboration between hospitals and healthcare entities to improve patient care through the utilization of machine learning algorithms. Moreover, the findings suggest room for improvement, potentially achievable with a larger dataset and careful parameter tuning.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助殷勤的汲采纳,获得10
刚刚
7h发布了新的文献求助10
2秒前
3秒前
3秒前
ABB完成签到,获得积分10
3秒前
D3完成签到,获得积分10
3秒前
风吹似夏完成签到,获得积分10
4秒前
俏皮的天空完成签到 ,获得积分10
5秒前
Harry完成签到,获得积分10
6秒前
深情安青应助jjk采纳,获得10
8秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
小路发布了新的文献求助10
9秒前
舒心的枫完成签到,获得积分10
9秒前
科研通AI6应助zhaohui采纳,获得10
10秒前
10秒前
小辫儿完成签到,获得积分10
11秒前
11秒前
摅羽完成签到 ,获得积分10
11秒前
落枫完成签到,获得积分10
12秒前
小马甲应助欣欣向荣采纳,获得10
12秒前
wwbb完成签到 ,获得积分20
14秒前
14秒前
15秒前
cchx发布了新的文献求助10
15秒前
要减肥笑阳完成签到 ,获得积分10
15秒前
nancylan应助坚强哑铃采纳,获得10
15秒前
怪力kitty完成签到,获得积分10
16秒前
JIaaaa完成签到 ,获得积分20
16秒前
活力的紫菜完成签到,获得积分10
16秒前
123完成签到,获得积分10
17秒前
wuzhenwei完成签到,获得积分10
17秒前
Bosen完成签到,获得积分10
18秒前
18秒前
小辫儿发布了新的文献求助10
18秒前
19秒前
翟永胜发布了新的文献求助10
19秒前
嘎嘎完成签到,获得积分10
19秒前
伍柒完成签到 ,获得积分10
20秒前
乐乐应助帅气的迎夏采纳,获得10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5535849
求助须知:如何正确求助?哪些是违规求助? 4623645
关于积分的说明 14588121
捐赠科研通 4564162
什么是DOI,文献DOI怎么找? 2501473
邀请新用户注册赠送积分活动 1480430
关于科研通互助平台的介绍 1451766