计量单位
惯性测量装置
工作站
可穿戴计算机
人工搬运
工作(物理)
模拟
运动学
计算机科学
持续监测
工程类
运营管理
人工智能
物理
量子力学
机械工程
经典力学
嵌入式系统
操作系统
出处
期刊:Ergonomics
[Taylor & Francis]
日期:2024-04-22
卷期号:67 (11): 1596-1611
被引量:6
标识
DOI:10.1080/00140139.2024.2343949
摘要
Wearable inertial measurement units (IMUs) are used increasingly to estimate biomechanical exposures in lifting-lowering tasks. The objective of the study was to develop and evaluate predictive models for estimating relative hand loads and two other critical biomechanical exposures to gain a comprehensive understanding of work-related musculoskeletal disorders in lifting. We collected 12,480 lifting-lowering phases from 26 subjects (15 men and 11 women) performing manual lifting-lowering tasks with hand loads (0-22.7 kg) at varied workstation heights and handling modes. We implemented a
科研通智能强力驱动
Strongly Powered by AbleSci AI