已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A computationally efficient modeling of flow in complex porous media by coupling multiscale digital rock physics and deep learning: Improving the tradeoff between resolution and field-of-view

多孔介质 计算机科学 卷积神经网络 人工智能 深度学习 领域(数学) 机器学习 算法 多孔性 地质学 数学 岩土工程 纯数学
作者
Iman Nabipour,Amir Raoof,Veerle Cnudde,Hamed Aghaei,Jafar Qajar
出处
期刊:Advances in Water Resources [Elsevier BV]
卷期号:188: 104695-104695 被引量:7
标识
DOI:10.1016/j.advwatres.2024.104695
摘要

Digital rock physics is at the forefront of characterizing porous media, leveraging advanced tomographic imaging and numerical simulations to extract key rock properties like permeability. However, fully capturing the heterogeneity of natural rocks necessitates imaging increasingly larger sample volumes, presenting a significant challenge. Direct numerical simulations at these scales become either prohibitively expensive or computationally unfeasible due to limitations in resolution and field of view (FOV). This issue is particularly pronounced in carbonate rocks, known for their complex, multiscale pore structures, which exacerbate the resolution-FOV tradeoff. To address this, we introduce a machine learning strategy that merges multiscale imaging data from various resolutions with a 3D convolutional neural network (CNN) model. This approach is innovative in its ability to identify cross-scale correlations, thereby enabling the estimation of transport properties in larger volumes—properties that are difficult to simulate directly—using trainable proxies. The integration of multiscale imaging with deep learning allows for accurate permeability predictions at scales beyond those feasible with traditional direct simulation methods. By employing transfer learning across different scales during the training phase, our multiscale machine learning model achieves robust performance, with an R² exceeding 0.96 when evaluated on diverse lower-resolution domains with larger FOVs. Notably, this method significantly enhances computational efficiency, reducing the computational time by orders of magnitude. Originally developed for the intricate pore structures of carbonate rocks, our approach shows promise for application to a wide range of multiscale porous media, offering a viable solution to the longstanding tradeoff between imaging resolution and FOV in digital rock physics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嘟嘟嘟嘟完成签到,获得积分10
1秒前
陈同学完成签到 ,获得积分10
2秒前
3秒前
4秒前
zianlai发布了新的文献求助10
4秒前
wanci应助典雅的俊驰采纳,获得10
4秒前
点击获取发布了新的文献求助10
6秒前
皮皮完成签到 ,获得积分10
7秒前
7秒前
果汁完成签到 ,获得积分10
8秒前
kattt发布了新的文献求助10
8秒前
HDD完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
9秒前
013完成签到,获得积分10
9秒前
lucky发布了新的文献求助10
9秒前
11秒前
微微发布了新的文献求助10
11秒前
zianlai完成签到,获得积分10
13秒前
棉花发布了新的文献求助10
16秒前
17秒前
NexusExplorer应助微微采纳,获得10
18秒前
隐形曼青应助棉花采纳,获得10
23秒前
Sunny完成签到 ,获得积分10
23秒前
kk发布了新的文献求助20
23秒前
打打应助暮光的加纳采纳,获得10
23秒前
lyylxcz发布了新的文献求助10
25秒前
26秒前
yydragen应助ysysljj采纳,获得30
28秒前
30秒前
XS_QI发布了新的文献求助10
31秒前
ograss发布了新的文献求助10
31秒前
LIU发布了新的文献求助20
32秒前
34秒前
甜蜜的楷瑞应助sll采纳,获得10
47秒前
Tianxu Li完成签到,获得积分20
47秒前
冷静访梦完成签到,获得积分10
48秒前
断棍豪斯完成签到,获得积分10
51秒前
52秒前
54秒前
科研狗完成签到 ,获得积分10
55秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 1000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4042373
求助须知:如何正确求助?哪些是违规求助? 3580100
关于积分的说明 11382839
捐赠科研通 3308423
什么是DOI,文献DOI怎么找? 1820527
邀请新用户注册赠送积分活动 893416
科研通“疑难数据库(出版商)”最低求助积分说明 815590