清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Artificial intelligence in materials science and modern concrete technologies: analysis of possibilities and prospects

计算机科学 组分(热力学) 人工神经网络 预测建模 领域(数学) 机器学习 人工智能 流变学 生产(经济) 实验数据 材料科学 数学 复合材料 经济 宏观经济学 物理 统计 纯数学 热力学
作者
V. А. Poluektova,M. A. Poluektov
出处
期刊:Перспективные материалы [Intercontact Science]
卷期号:1: 5-19
标识
DOI:10.30791/1028-978x-2024-1-5-19
摘要

An analysis of current trends and opportunities for the application of artificial intelligence (AI) in materials science and concrete technology, including 3D printing in construction, is presented. The key role of AI in predicting material properties, developing new materials, and quality control is highlighted. By analyzing large volumes of data collected from numerous studies, AI can suggest optimal parameters to achieve desired material properties, thereby reducing costs and increasing production efficiency. Existing rheological models, such as the Bingham-Shvedov model or the Herschel-Bulkley model, describe material behavior based on specific equations and parameters. These models can be useful in predicting concrete properties, especially when data on its component composition is available. However, these models may be limited in their predictive accuracy, particularly for non-standard or novel materials. It has been found that machine learning and neural networks have the potential to provide accurate predictions of rheological and physico-mechanical properties of concrete materials, considering multiple parameters that influence material characteristics, including chemical and mineralogical composition, as well as structural features. The combination of experimental data and AI can successfully optimize compositions and properties during production, reducing costs and research/testing time, and opening new opportunities for researchers and engineers in the field of materials science. Machine learning algorithms such as XGBoost, LightGBM, Catboost, and NGBoost demonstrate high predictive accuracy and have become powerful tools in the design of concrete compositions and innovative technologies. The analysis of Shapley additive explanations (SHAP) allows us to understand which parameters of a concrete mixture have the greatest influence on its characteristics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11秒前
56秒前
1分钟前
1分钟前
1分钟前
熊猫胖胖WITH超人完成签到,获得积分20
1分钟前
1分钟前
耍酷平凡发布了新的文献求助10
1分钟前
1分钟前
ewxf2001发布了新的文献求助10
2分钟前
2分钟前
花园里的蒜完成签到 ,获得积分0
2分钟前
荔枝发布了新的文献求助20
2分钟前
ewxf2001完成签到,获得积分10
2分钟前
juan完成签到 ,获得积分10
2分钟前
cxwcn完成签到 ,获得积分10
2分钟前
Hiram完成签到,获得积分10
2分钟前
2分钟前
wmj完成签到,获得积分10
2分钟前
Ava应助落寞的又菡采纳,获得10
2分钟前
刚子完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
jiejie完成签到,获得积分10
4分钟前
4分钟前
沿途有你完成签到 ,获得积分10
4分钟前
耍酷平凡完成签到,获得积分10
5分钟前
荔枝发布了新的文献求助10
5分钟前
5分钟前
连安阳完成签到,获得积分10
5分钟前
6分钟前
荔枝发布了新的文献求助10
6分钟前
丁老三完成签到 ,获得积分10
7分钟前
7分钟前
Jim发布了新的文献求助10
8分钟前
8分钟前
8分钟前
两个榴莲完成签到,获得积分0
8分钟前
8分钟前
Unlisted发布了新的文献求助10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4582521
求助须知:如何正确求助?哪些是违规求助? 4000238
关于积分的说明 12382295
捐赠科研通 3675277
什么是DOI,文献DOI怎么找? 2025775
邀请新用户注册赠送积分活动 1059428
科研通“疑难数据库(出版商)”最低求助积分说明 946108