Fruit and vegetable disease detection and classification: Recent trends, challenges, and future opportunities

计算机科学 数据科学 人工智能
作者
Sachin Kumar Gupta,Ashish Kumar Tripathi
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:133: 108260-108260 被引量:15
标识
DOI:10.1016/j.engappai.2024.108260
摘要

Fruits and vegetables are major sources of nutrients for the majority of the population across the globe. With the rapid increase in population, the objectives of the future agro-industry are to reduce product loss while increasing product quality and productivity considerably. Consequently, farmers need to be assisted with cutting-edge technologies for sustainable, eco-friendly, and efficient farming. Smart farming for early disease recognition and control is the current hot-spot research objective in the fruitage domain. The precision agriculture era has been revolutionized by federating cutting-edge technologies like machine learning, deep learning, and, the Internet-of-Things. However, the existing studies focused on the impact of individual technology on single or multiple cultivars of edible fruits or vegetables. Limited areas of the fruitage disease remain explored, necessitating further investigation into the research gaps and challenges identified for implementing the smart practices in real-field farmlands. In this paper, a comprehensive survey of recent advancements in fruit and vegetable disease identification and classification is presented. The technology-wise state-of-the-art findings, gaps, challenges, and future opportunities for fruitage disease recognition have been presented, covering 99 research articles. Moreover, the corpus of publicly available fruit and vegetable datasets has been investigated, with the existing gaps, improvements, and future requirements. The research paper concludes with challenges and a future outlook that promises to be a very significant and valuable resource for researchers working in the area of agronomic disease monitoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Agu完成签到,获得积分10
1秒前
1秒前
1秒前
Jia发布了新的文献求助10
2秒前
科研通AI5应助Yy采纳,获得30
2秒前
枫竹完成签到,获得积分10
3秒前
3秒前
hoongyan完成签到 ,获得积分10
4秒前
ljs发布了新的文献求助10
4秒前
神马研通完成签到,获得积分10
5秒前
5秒前
6秒前
Dding完成签到,获得积分10
6秒前
科研通AI5应助罗晨采纳,获得10
6秒前
6秒前
阿丽阿丽发布了新的文献求助10
6秒前
6秒前
可爱的函函应助虚幻雪枫采纳,获得10
7秒前
热情饼干发布了新的文献求助10
7秒前
7秒前
ssy发布了新的文献求助10
8秒前
10秒前
HEIKU应助科研通管家采纳,获得10
11秒前
夕诙应助科研通管家采纳,获得30
11秒前
HEIKU应助科研通管家采纳,获得10
11秒前
竹筏过海应助科研通管家采纳,获得30
11秒前
桐桐应助科研通管家采纳,获得10
11秒前
pluto应助科研通管家采纳,获得10
11秒前
lx840518发布了新的文献求助10
11秒前
Akim应助科研通管家采纳,获得10
11秒前
11秒前
NexusExplorer应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
科研通AI5应助Hammer采纳,获得30
11秒前
哟嚛发布了新的文献求助10
11秒前
11秒前
搜集达人应助科研通管家采纳,获得10
11秒前
斯文败类应助科研通管家采纳,获得10
12秒前
英姑应助科研通管家采纳,获得10
12秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Functional Polyimide Dielectrics: Structure, Properties, and Applications 450
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795186
求助须知:如何正确求助?哪些是违规求助? 3340148
关于积分的说明 10298847
捐赠科研通 3056613
什么是DOI,文献DOI怎么找? 1677114
邀请新用户注册赠送积分活动 805194
科研通“疑难数据库(出版商)”最低求助积分说明 762391