Effect of blade surface cooling on a micro transonic axial compressor performance at low Reynolds number

机械 材料科学 气体压缩机 层流 定子 空气动力学 雷诺数 雷诺平均Navier-Stokes方程 失速(流体力学) 跨音速 机械工程 湍流 计算流体力学 工程类 物理
作者
Hongzhi Cheng,Ziliang Li,Chuangxin Zhou,Xingen Lu,Shengfeng Zhao,Ge Han
出处
期刊:Applied Thermal Engineering [Elsevier]
卷期号:226: 120353-120353 被引量:23
标识
DOI:10.1016/j.applthermaleng.2023.120353
摘要

Due to the high ratio of surface area to volume and the limitations of manufacturing precision, the impact of wall temperature and heat transfer on the aerodynamic performance of micro gas turbines is greater than that of traditional larger counterparts. Therefore, this study numerically investigates the effect of rotor wall cooling on the aerodynamic and thermal performance of a 1.5-stage transonic compressor at a low Reynolds number using a three-dimensional Reynolds averaged Navier-stokes (RANS) simulation. In this study, we use a volume model that takes into account the actual shaft work, and the main findings can be summarized as follows: At the optimal wall temperature, wall cooling could potentially raise the compressor performance, with the peak efficiency increasing by about 3.7% and the pressure ratio increasing by about 1.8%. Wall cooling reduces the dynamic viscosity and increases the wall shear stress, which delays the laminar separation transition process, promotes the reattachment, and shortens the laminar separation bubble, substantially decreasing separation losses. Meanwhile, the loss caused by vortex dissipation decreases. Wall cooling slightly improves the matching relationship between the rotor and the aft stator, and also reduces the flow separation losses of the stator. Wall cooling introduces additional thermal and viscous dissipation to the blade passages, which prevents the compressor’s aerodynamic performance from increasing continuously. The present study analyzes the separation transition process, the entropy production mechanism, and deeply explores the effect of wall cooling, which is meaningful for the aerodynamic and thermal design of advanced micro-compressors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助笑点低凌寒采纳,获得10
刚刚
刚刚
2秒前
111发布了新的文献求助10
2秒前
朴实的小懒虫完成签到,获得积分10
2秒前
2秒前
Dean应助hujiajun采纳,获得50
4秒前
mars发布了新的文献求助10
6秒前
李静发布了新的文献求助10
6秒前
orixero应助momo采纳,获得10
6秒前
adamchris发布了新的文献求助10
6秒前
阿馨应助lixm采纳,获得10
6秒前
7秒前
zhou完成签到,获得积分10
7秒前
FashionBoy应助天际采纳,获得10
8秒前
8秒前
xuan发布了新的文献求助10
9秒前
11秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
nczpf2010发布了新的文献求助10
13秒前
15秒前
15秒前
超级幼旋应助111采纳,获得10
16秒前
fdu_sf发布了新的文献求助10
16秒前
徐徐徐徐发布了新的文献求助10
16秒前
顾矜应助Yy采纳,获得10
17秒前
18秒前
18秒前
18秒前
炼金术士马柱子完成签到,获得积分10
19秒前
19秒前
19秒前
任从蓉完成签到,获得积分10
21秒前
Akim应助CHA采纳,获得10
21秒前
22秒前
jia发布了新的文献求助10
22秒前
小小完成签到,获得积分10
22秒前
dududu发布了新的文献求助20
22秒前
悬夜发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
Sport, Social Media, and Digital Technology: Sociological Approaches 650
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5593888
求助须知:如何正确求助?哪些是违规求助? 4679724
关于积分的说明 14811268
捐赠科研通 4645341
什么是DOI,文献DOI怎么找? 2534709
邀请新用户注册赠送积分活动 1502747
关于科研通互助平台的介绍 1469450