An on-board detection framework for polygon wear of railway wheel based on vibration acceleration of axle-box

振动 加速度 时域 工程类 噪音(视频) 断层(地质) 故障检测与隔离 磁道(磁盘驱动器) 汽车工程 多边形(计算机图形学) 结构工程 计算机科学 声学 执行机构 机械工程 人工智能 电气工程 计算机视觉 地震学 经典力学 地质学 图像(数学) 帧(网络) 物理
作者
Qi Sun,Chunjun Chen,Andrew H. Kemp,Peter C. Brooks
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:153: 107540-107540 被引量:62
标识
DOI:10.1016/j.ymssp.2020.107540
摘要

• It exploits the vertical axle-box vibration acceleration signal that it is helpful to simplify the hardware of monitoring system of high-speed train. • The proposed angular synchronous average technique perfectly enhances the fault-related signal of wheel polygon wear by mitigating the asynchronous coherent and random background noise. • The proposed method can detect the order and the rough degree of railway wheel polygonization fault in real-time. The polygon wear of railway wheel (PWRW) is a wear fault that is ubiquitous in railway vehicles. PWRW can induce a strong periodic excitation to both vehicle and track, which not only decreases passenger comfort but also is detrimental to the operational reliability and safety. Both the degree and the order of PWRW are important parameters used to quantify the fault. Because the fault-related components distribute at a wide range in the frequency domain, it is easy to alias with some radiated vibrations from vehicle and track components, which makes the on-board detection for both parameters of PWRW very difficult. To address the practical engineering problem, this paper proposes a detection framework based on the angle domain synchronous averaging technique (ADSAT). The detection method employs the vertical axle-box vibration acceleration (ABVA), which is easy to obtain and can also be used to monitor the conditions of axle-box bearings. The paper compares the proposed and traditional methods. The results reveal that the proposed method not only achieves the order detection which the traditional method cannot, but also mitigates the influence of background noise. The feasibility and effectiveness of the proposed method to improve the detection accuracy of PWRW is demonstrated through simulation and real field investigations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shuiyi发布了新的文献求助10
刚刚
1秒前
整齐的飞兰完成签到 ,获得积分10
2秒前
七七发布了新的文献求助10
2秒前
li发布了新的文献求助10
3秒前
3秒前
4秒前
jidong完成签到,获得积分10
5秒前
fionadong完成签到,获得积分10
5秒前
实验室应助早安采纳,获得30
6秒前
深情安青应助擦撒擦擦采纳,获得10
7秒前
123完成签到,获得积分10
7秒前
老实棒棒糖完成签到,获得积分10
8秒前
你小子完成签到,获得积分10
8秒前
复杂从梦完成签到,获得积分10
8秒前
华仔应助一步之遥采纳,获得10
8秒前
Chloe完成签到,获得积分10
10秒前
爱学习的鼠鼠完成签到,获得积分10
10秒前
鱼鱼发布了新的文献求助10
10秒前
张小明完成签到,获得积分10
12秒前
华仔应助moxi摩西采纳,获得10
12秒前
Hilda007应助文静人达采纳,获得10
13秒前
当归发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
14秒前
魏欣雨完成签到,获得积分10
15秒前
16秒前
16秒前
唠叨的以柳完成签到,获得积分10
16秒前
靓丽冬灵关注了科研通微信公众号
17秒前
识途完成签到,获得积分10
17秒前
冬日发布了新的文献求助10
17秒前
深情安青应助zpctx采纳,获得10
18秒前
简奥斯汀发布了新的文献求助10
19秒前
19秒前
20秒前
小耶耶完成签到,获得积分10
20秒前
吃饭了吗123完成签到,获得积分10
21秒前
今后应助挹翠揽星采纳,获得10
21秒前
小党发布了新的文献求助10
22秒前
anydwason完成签到,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5601001
求助须知:如何正确求助?哪些是违规求助? 4686544
关于积分的说明 14844858
捐赠科研通 4679334
什么是DOI,文献DOI怎么找? 2539149
邀请新用户注册赠送积分活动 1506013
关于科研通互助平台的介绍 1471253